1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reduction of diabetes-induced renal oxidative stress by a cantaloupe melon extract/gliadin biopolymers, oxykine, in mice

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetic kidney disease in the db/db mouse.

          Diabetic nephropathy is increasing in incidence and is now the number one cause of end-stage renal disease in the industrialized world. To gain insight into the genetic susceptibility and pathophysiology of diabetic nephropathy, an appropriate mouse model of diabetic nephropathy would be critical. A large number of mouse models of diabetes have been identified and their kidney disease characterized to various degrees. Perhaps the best characterized and most intensively investigated model is the db/db mouse. Because this model appears to exhibit the most consistent and robust increase in albuminuria and mesangial matrix expansion, it has been used as a model of progressive diabetic renal disease. In this review, we present the findings from various studies on the renal pathology of the db/db mouse model of diabetes in the context of human diabetic nephropathy. Furthermore, we discuss shortfalls of assessing functional renal disease in mouse models of diabetic kidney disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy.

             Ajay Shah,  Man-Mei Li (2003)
            Oxidative stress has emerged as an important pathogenic factor in the development of long-term complications, such as atherosclerosis and nephropathy, in patients with diabetes. Whereas multiple enzymes and processes can contribute to oxidative stress, recent studies indicate that a multicomponent phagocyte-type NADPH oxidase is a major source of reactive oxygen species (ROS) production in many nonphagocytic cells, including fibroblasts, vascular smooth muscle cells, endothelial cells, renal mesangial cells, and tubular cells. Under physiologic conditions, nonphagocytic NADPH oxidases have very low-level constitutive activity. However, enzyme activity can be upregulated both acutely and chronically in response to stimuli such as growth factors, cytokines, high glucose, and hyperlipidemia. ROS production by the oxidase may serve a signaling role or may lead to oxidative damage. This article reviews current knowledge of the nonphagocyte-NADPH oxidases at both structural and biochemical levels and discusses the possible role of these enzymes in the pathophysiology of diabetic nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of urinary 8-hydroxydeoxy-guanosine as a novel biomarker of macrovascular complications in type 2 diabetes.

              To evaluate urinary 8-hydroxydeoxyguanosine (8-OHdG) as a marker for the progression of diabetic macroangiopathic complications. The content of urinary 8-OHdG, common carotid intima-media thickness (IMT), the coronary heart disease (CHD) risk score, the severity of diabetic retinopathy, and urinary albumin excretion were examined in 96 patients with type 2 diabetes, including 32 patients who had been nominated for the Kumamoto Study [Shichiri M, et al. Diabetes Care 23 (Suppl 2):B21-B29, 2000]. In addition, the patients from the Kumamoto Study were further evaluated regarding the effect of intensive insulin therapy on urinary 8-OHdG excretion. The urinary 8-OHdG:creatinine ratio (U8-OHdG) was 2.5-fold higher in patients with increased HbA(1c) than in those with normal HbA(1c) (P < 0.05). In addition, U8-OHdG was 2.3-fold higher in patients with increased IMT (P < 0.005). A similar result was observed between U8-OHdG and CHD risk score (P < 0.01). U8-OHdG was significantly higher in patients with simple retinopathy (P < 0.05) and those with advanced retinopathy (P < 0.01) than in patients without retinopathy. Similarly, U8-OHdG was significantly higher in patients with albuminuria (P < 0.01). Furthermore, in the Kumamoto Study, U8-OHdG was significantly lower in the multiple insulin injection therapy group compared with the conventional insulin injection therapy group (P < 0.01). Hyperglycemia independently increases 8-OHdG in patients with type 2 diabetes. 8-OHdG is a useful biomarker of not only microvascular but also macrovascular complications in patients with type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                BIOF
                BioFactors
                BioFactors
                Wiley
                09516433
                18728081
                2005
                2005
                : 23
                : 2
                : 85-95
                Article
                10.1002/biof.5520230204
                © 2005
                Product

                Comments

                Comment on this article