69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Polycomb Group Protein Is Retained at Specific Sites on Chromatin in Mitosis

      research-article
      , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigenetic regulation of gene expression, including by Polycomb Group (PcG) proteins, may depend on heritable chromatin states, but how these states can be propagated through mitosis is unclear. Using immunofluorescence and biochemical fractionation, we find PcG proteins associated with mitotic chromosomes in Drosophila S2 cells. Genome-wide sequencing of chromatin immunoprecipitations (ChIP–SEQ) from mitotic cells indicates that Posterior Sex Combs (PSC) is not present at well-characterized PcG targets including Hox genes in mitosis, but does remain at a subset of interphase sites. Many of these persistent sites overlap with chromatin domain borders described by Sexton et al. (2012), which are genomic regions characterized by low levels of long range contacts. Persistent PSC binding sites flank both Hox gene clusters. We hypothesize that disruption of long-range chromatin contacts in mitosis contributes to PcG protein release from most sites, while persistent binding at sites with minimal long-range contacts may nucleate re-establishment of PcG binding and chromosome organization after mitosis.

          Author Summary

          Gene expression profiles must be maintained through the cell cycle in many situations during development. How gene expression profiles are maintained through mitosis by transcriptional regulators like the Polycomb Group (PcG) proteins is not well understood. Here we find that PcG proteins remain associated with mitotic chromatin, and a small subset of PcG binding sites throughout the genome is maintained between interphase and mitosis. These persistent binding sites preferentially overlap borders of chromatin domains. These results suggest a model in which PcG proteins retained at border sites may nucleate re-binding of PcG protein within domains after mitosis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of functional elements and regulatory circuits by Drosophila modENCODE.

            To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of polycomb gene silencing: knowns and unknowns.

              Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2012
                December 2012
                20 December 2012
                : 8
                : 12
                : e1003135
                Affiliations
                [1]Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
                University of California San Francisco, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NEF NJF. Performed the experiments: NEF. Analyzed the data: NEF. Contributed reagents/materials/analysis tools: NEF AHW. Wrote the paper: NEF NJF.

                Article
                PGENETICS-D-12-01380
                10.1371/journal.pgen.1003135
                3527277
                23284300
                bdf7fbae-f787-4698-a453-f21310c3b058
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 June 2012
                : 16 October 2012
                Page count
                Pages: 18
                Funding
                This work was funded by RO1 GM078456-01 and 3R01 GM078456-04S1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article