66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies[S]

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3, which synthesize C18- and C≥24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosylCers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs ( Elovl3 and Elovl6), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium.

          The in vitro developmental potential of mouse blastocyst-derived embryonic stem cell lines has been investigated. From 3 to 8 days of suspension culture the cells form complex embryoid bodies with endoderm, basal lamina, mesoderm and ectoderm. Many are morphologically similar to embryos of the 6- to 8-day egg-cylinder stage. From 8 to 10 days of culture about half of the embryoid bodies expand into large cystic structures containing alphafoetoprotein and transferrin, thus being analagous to the visceral yolk sac of the postimplantation embryo. Approximately one third of the cystic embryoid bodies develop myocardium and when cultured in the presence of human cord serum, 30% develop blood islands, thereby exhibiting a high level of organized development at a very high frequency. Furthermore, most embryonic stem cell lines observed exhibit similar characteristics. The in vitro developmental potential of embryonic stem cell lines and the consistency with which the cells express this potential are presented as aspects which open up new approaches to the investigation of embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate.

            Ceramide is an important lipid signaling molecule and a key intermediate in sphingolipid biosynthesis. Recent studies have implied a previously unappreciated role for the ceramide N-acyl chain length, inasmuch as ceramides containing specific fatty acids appear to play defined roles in cell physiology. The discovery of a family of mammalian ceramide synthases (CerS), each of which utilizes a restricted subset of acyl-CoAs for ceramide synthesis, strengthens this notion. We now report the characterization of mammalian CerS2. qPCR analysis reveals that CerS2 mRNA is found at the highest level of all CerS and has the broadest tissue distribution. CerS2 has a remarkable acyl-CoA specificity, showing no activity using C16:0-CoA and very low activity using C18:0, rather utilizing longer acyl-chain CoAs (C20-C26) for ceramide synthesis. There is a good correlation between CerS2 mRNA levels and levels of ceramide and sphingomyelin containing long acyl chains, at least in tissues where CerS2 mRNA is expressed at high levels. Interestingly, the activity of CerS2 can be regulated by another bioactive sphingolipid, sphingosine 1-phosphate (S1P), via interaction of S1P with two residues that are part of an S1P receptor-like motif found only in CerS2. These findings provide insight into the biochemical basis for the ceramide N-acyl chain composition of cells, and also reveal a novel and potentially important interplay between two bioactive sphingolipids that could be relevant to the regulation of sphingolipid metabolism and the opposing functions that these lipids play in signaling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry.

              Sphingolipids are a highly diverse category of compounds that serve not only as components of biologic structures but also as regulators of numerous cell functions. Because so many of the sphingolipids in a biological system are bioactive and are often closely related structurally and metabolically (for example, complex sphingolipids ceramide sphingosine sphingosine 1-phosphate), to understand the role(s) of sphingolipids in a given context one must conduct a "sphingolipidomic" analysis-i.e., a structure-specific and quantitative measurement of all of these compounds, or at least all members of a critical subset. Liquid chromatography tandem mass spectrometry (LC MS/MS) is currently the only technology with the requisite structural specificity, sensitivity, quantitative precision, and relatively high-throughput capabilities for such analyses in small samples ( approximately 10(6) cells). This review describes a series of protocols that have been developed for the relatively rapid analysis of all of the molecular species from 3-ketosphinganines through sphingomyelins and some glycosphingolipids (including all the compounds that are presently regarded as sphingolipid "second messengers") using normal- and reverse-phase LC to separate isometric and isobaric species (such as glucosylceramides and galactosylceramides) in combination with triple quadrupole (for MS/MS) and hybrid quadrupole-ion trap (for MS3) mass spectrometry. Also discussed are some of the issues remaining to be resolved in the analysis of the full sphingolipidome.
                Bookmark

                Author and article information

                Journal
                J Lipid Res
                J. Lipid Res
                jlr
                Journal of Lipid Research
                The American Society for Biochemistry and Molecular Biology
                0022-2275
                1539-7262
                March 2010
                March 2010
                March 2010
                : 51
                : 3
                : 480-489
                Affiliations
                [* ]School of Biology & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
                []Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
                Author notes
                [1 ]To whom correspondence should be addressed. e-mail: al.merrill@ 123456biology.gatech.edu .
                Article
                m000984
                10.1194/jlr.M000984
                2817578
                19786568
                be0dd5fc-3f1b-4c5e-b139-cc6f7317544c
                Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Non-Commercial License applies to Author Choice Articles

                History
                : 23 September 2009
                : 24 September 2009
                Categories
                Research Article

                Biochemistry
                fatty acyl-coa elongase,sphingolipid,differentiation,ceramide synthase,embryonic stem cell,embryoid body

                Comments

                Comment on this article