38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemically recyclable polymers: a circular economy approach to sustainability

      ,
      Green Chemistry
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developing recyclable polymers provides a solution to materials' end-of-life issues and also an approach to establish a circular materials economy.

          Abstract

          The current practices in the generation and disposal of synthetic polymers are largely unsustainable. As part of the solution, the development of biodegradable polymers, which constitute a class of “green polymers” according to green chemistry principles, has been intensively pursued in the past two decades. However, the degradation of such polymers in Earth's landfills typically leads to no recovery of the materials’ value, and their degradation in the Oceans could create new or unintended environmental consequences. Industrial mechanical recycling always suffers from a significant quality loss. The proposed more sustainable solution is to develop chemically recyclable polymers that not only solve the end-of-life issue of polymers, but also provide a direct approach to establish a circular materials economy. Accordingly, this critical review article captures some selected highlights of the emerging area of recyclable “green polymers” by focusing on the major progress made and the technical and environmental benefits obtained in the development of repurposing and depolymerization processes for chemical recycling of polymers at the end of their useful life.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

            Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, <5 mm. While macro-debris may sometimes be traced to its origin by object identification or markings, micro-debris, consisting of particles of two main varieties, (1) fragments broken from larger objects, and (2) resin pellets and powders, the basic thermoplastic industry feedstocks, are difficult to trace. Ingestion of plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified. Ingestion of degraded plastic pellets and fragments raises toxicity concerns, since plastics are known to adsorb hydrophobic pollutants. The potential bioavailability of compounds added to plastics at the time of manufacture, as well as those adsorbed from the environment are complex issues that merit more widespread investigation. The physiological effects of any bioavailable compounds desorbed from plastics by marine biota are being directly investigated, since it was found 20 years ago that the mass of ingested plastic in Great Shearwaters was positively correlated with PCBs in their fat and eggs. Colonization of plastic marine debris by sessile organisms provides a vector for transport of alien species in the ocean environment and may threaten marine biodiversity. There is also potential danger to marine ecosystems from the accumulation of plastic debris on the sea floor. The accumulation of such debris can inhibit gas exchange between the overlying waters and the pore waters of the sediments, and disrupt or smother inhabitants of the benthos. The extent of this problem and its effects have recently begun to be investigated. A little more than half of all thermoplastics will sink in seawater.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Controlled ring-opening polymerization of lactide and glycolide.

                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2017
                2017
                : 19
                : 16
                : 3692-3706
                Article
                10.1039/C7GC01496A
                be138000-3ac1-4aad-9aa5-154623262a67
                © 2017
                History

                Comments

                Comment on this article