1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disrupted Neural Activity in Individuals With Iridocyclitis Using Regional Homogeneity: A Resting-State Functional Magnetic Resonance Imaging Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: This study used the regional homogeneity (ReHo) technique to explore whether spontaneous brain activity is altered in patients with iridocyclitis.

          Methods: Twenty-six patients with iridocyclitis (14 men and 12 women) and 26 healthy volunteers (15 men and 11 women) matched for sex and age were enrolled in this study. The ReHo technique was used to comprehensively assess changes in whole-brain synchronous neuronal activity. The diagnostic ability of the ReHo method was evaluated by means of receive operating characteristic (ROC) curve analysis. Moreover, associations of average ReHo values in different brain areas and clinical characteristics were analyzed using correlation analysis.

          Result: Compared with healthy volunteers, reduced ReHo values were observed in patients with iridocyclitis in the following brain regions: the right inferior occipital gyrus, bilateral calcarine, right middle temporal gyrus, right postcentral gyrus, left superior occipital gyrus, and left precuneus. In contrast, ReHo values were significantly enhanced in the right cerebellum, left putamen, left supplementary motor area, and left inferior frontal gyrus in patients with iridocyclitis, compared with healthy volunteers (false discovery rate correction, P < 0.05).

          Conclusion: Patients with iridocyclitis exhibited disturbed synchronous neural activities in specific brain areas, including the visual, motor, and somatosensory regions, as well as the default mode network. These findings offer a novel image-guided research strategy that might aid in exploration of neuropathological or compensatory mechanisms in patients with iridocyclitis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

          Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.

            In children with attention deficit hyperactivity disorder (ADHD), functional neuroimaging studies have revealed abnormalities in various brain regions, including prefrontal-striatal circuit, cerebellum, and brainstem. In the current study, we used a new marker of functional magnetic resonance imaging (fMRI), amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to investigate the baseline brain function of this disorder. Thirteen boys with ADHD (13.0+/-1.4 years) were examined by resting-state fMRI and compared with age-matched controls. As a result, we found that patients with ADHD had decreased ALFF in the right inferior frontal cortex, [corrected] and bilateral cerebellum and the vermis as well as increased ALFF in the right anterior cingulated cortex, left sensorimotor cortex, and bilateral brainstem. This resting-state fMRI study suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The precuneus: a review of its functional anatomy and behavioural correlates.

              Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                12 February 2021
                2021
                : 12
                : 609929
                Affiliations
                [1] 1Eye Center, Renmin Hospital of Wuhan University , Wuhan, China
                [2] 2Department of Ophthalmology, Jiangxi Provincial People's Hospital , Nanchang, China
                [3] 3Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University , Wuhan, China
                Author notes

                Edited by: Ahmed Toosy, University College London, United Kingdom

                Reviewed by: Hai jun Li, Nanchang University, China; Gloria Castellazzi, University College London, United Kingdom

                *Correspondence: Yin Shen yinshen@ 123456whu.edu.cn

                This article was submitted to Neuro-Ophthalmology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2021.609929
                7907498
                33643195
                be21d775-10ff-4bd8-bf6e-4208946638af
                Copyright © 2021 Tong, Huang, Qi and Shen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2020
                : 11 January 2021
                Page count
                Figures: 6, Tables: 4, Equations: 1, References: 59, Pages: 10, Words: 6721
                Funding
                Funded by: National Key Research and Development Program of China 10.13039/501100012166
                Categories
                Neurology
                Original Research

                Neurology
                iridocyclitis,regional homogeneity,resting-state fmri,spontaneous brain activity,inflammation

                Comments

                Comment on this article