8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of miRNA-30a-5p on Pulmonary Fibrosis in Mice with Streptococcus pneumoniae Infection through Regulation of Autophagy by Beclin-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study is aimed at observing the influence of microribonucleic acid- (miRNA-) 30a-50p on the pulmonary fibrosis in mice with Streptococcus pneumoniae infection through the regulation of autophagy by Beclin-1. Specific pathogen-free mice were instilled with Streptococcus pneumoniae through the trachea to establish the pulmonary fibrosis model. Then, they were divided into the miRNA-30a-50p mimics group (mimics group, n = 10) and miRNA-30a-5p inhibitors group (inhibitors group, n = 10), with the control group ( n = 10) also set. Pulmonary tissue wet weight/dry weight (W/D) was detected. The content of tumor necrosis factor- α (TNF- α), interleukin- (IL-) 6, and myeloperoxidase (MPO) was determined using enzyme-linked immunosorbent assay (ELISA). Besides, the changes in the pulmonary function index dynamic lung compliance (Cdyn), plateau pressure (Pplat), and peak airway pressure (Ppeak) were monitored, and the gene and protein expression levels were measured via quantitative PCR (qPCR) and Western blotting. The expression level of miRNA-30a-5p was substantially raised in the mimics group ( p < 0.05), but extremely low in the inhibitors group ( p < 0.05). The mimics group had obviously raised levels of serum aminotransferase (AST), glutamic-pyruvic transaminase (GPT), alkaline phosphatase (ALP), and pulmonary tissue W/D ( p < 0.05). Additionally, the expression levels of TNF- α, IL-6, and MPO were notably elevated in the mimics group, while their expression levels showed the opposite conditions in the inhibitors group ( p < 0.05). According to the HE staining results, the inhibitors group had arranged orderly cells, while the mimics group exhibited lung injury, pulmonary edema, severe inflammatory response, and alveolar congestion. In the inhibitors group, Cdyn was remarkably elevated, but Pplat and Ppeak declined considerably ( p < 0.05). Besides, the inhibitors group exhibited elevated messenger RNA (mRNA) levels of Beclin-1 and LC3, lowered mRNA levels of α-SMA and p62, a raised protein level of Beclin-1, and a markedly decreased protein level of p62 ( p < 0.05). Silencing miRNA-30a-5p expression can promote the expression of Beclin-1 to accelerate the occurrence of autophagy, thereby treating pulmonary fibrosis in mice with Streptococcus pneumoniae infection.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.

          Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001.

            , (2002)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidelines for the use and interpretation of assays for monitoring autophagy

              In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2021
                23 September 2021
                : 2021
                : 9963700
                Affiliations
                Department of Laboratory, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650021, China
                Author notes

                Academic Editor: Junyan Liu

                Author information
                https://orcid.org/0000-0003-1846-8296
                Article
                10.1155/2021/9963700
                8486528
                34604389
                be27820b-3498-4d0e-afd5-013ced480250
                Copyright © 2021 Hanyu Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2021
                : 6 August 2021
                Categories
                Research Article

                Comments

                Comment on this article