8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cbeta3 stimulation by Galphaq.

      The Journal of Biological Chemistry
      Animals, Binding Sites, Cells, Cultured, Cloning, Molecular, Cyclic AMP-Dependent Protein Kinases, metabolism, Enzyme Activation, GTP-Binding Proteins, Isoenzymes, antagonists & inhibitors, genetics, Mutagenesis, Site-Directed, Phospholipase C beta, Phosphorylation, Serine, Swine, Type C Phospholipases

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanism by which protein kinase A (PKA) inhibits Galphaq -stimulated phospholipase C activity of the beta subclass (PLCbeta ) is unknown. We present evidence that phosphorylation of PLCbeta3 by PKA results in inhibition of Galphaq -stimulated PLCbeta3 activity, and we identify the site of phosphorylation. Two-dimensional phosphoamino acid analysis of in vitro phosphorylated PLCbeta3 revealed a single phosphoserine as the putative PKA site, and peptide mapping yielded one phosphopeptide. The residue was identified as Ser1105 by direct sequencing of reverse-phase high pressure liquid chromatography-isolated phosphopeptide and by site-directed mutagenesis. Overexpression of Galphaq with PLCbeta3 or PLCbeta (Ser1105--> Ala) mutant in COSM6 cells resulted in a 5-fold increase in [3H]phosphatidylinositol 1,4,5-trisphosphate formation compared with expression of Galphaq, PLCbeta3, or PLCbeta3 (Ser1105 --> Ala mutant alone. Whereas Galpha1-stimulated PLCbeta3, activity was inhibited by 58-71% by overexpression of PKA catalytic subunit, Galphaq-stimulated PLCbeta3 (Ser1105 --> Ala) mutant activity was not affected. Furthermore, phosphatidylinositide turnover stimulated by presumably Galpha1-coupled M1 muscarinic and oxytocin receptors was completely inhibited by pretreating cells with 8-[4-chlorophenythio]-cAMP in RBL-2H3 cells expressing only PLCbeta3. These data establish that direct phosphorylation by PKA of Ser1105 in the putative G-box of PLCbeta3 inhibits Galphaq-stimulated PLCbeta3 activity. This can at least partially explain the inhibitory effect of PKA on Galphaq-stimulated phosphatidylinositide turnover observed in a variety of cells and tissues.

          Related collections

          Author and article information

          Comments

          Comment on this article