25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data

          Substantial new features have been implemented at the Ribosomal Database Project in response to the increased importance of high-throughput rRNA sequence analysis in microbial ecology and related disciplines. The most important changes include quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDP's data. In addition, new video tutorials describe how to use RDP features. Details about RDP data and analytical functions can be found at the RDP-II website ().
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BLAST-EXPLORER helps you building datasets for phylogenetic analysis

            Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioremediation approaches for organic pollutants: a critical perspective.

              Due to human activities to a greater extent and natural processes to some extent, a large number of organic chemical substances such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents and pesticides pollute the soil and aquatic environments. Remediation of these polluted sites following the conventional engineering approaches based on physicochemical methods is both technically and economically challenging. Bioremediation that involves the capabilities of microorganisms in the removal of pollutants is the most promising, relatively efficient and cost-effective technology. However, the current bioremediation approaches suffer from a number of limitations which include the poor capabilities of microbial communities in the field, lesser bioavailability of contaminants on spatial and temporal scales, and absence of bench-mark values for efficacy testing of bioremediation for their widespread application in the field. The restoration of all natural functions of some polluted soils remains impractical and, hence, the application of the principle of function-directed remediation may be sufficient to minimize the risks of persistence and spreading of pollutants. This review selectively examines and provides a critical view on the knowledge gaps and limitations in field application strategies, approaches such as composting, electrobioremediation and microbe-assisted phytoremediation, and the use of probes and assays for monitoring and testing the efficacy of bioremediation of polluted sites. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 June 2017
                2017
                : 8
                : 1105
                Affiliations
                [1] 1Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel Kiel, Germany
                [2] 2Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbH Neuherberg, Germany
                Author notes

                Edited by: Pankaj Kumar Arora, M. J. P. Rohilkhand University, India

                Reviewed by: Stefano Fedi, Università di Bologna, Italy; Marc Viñas, Institute for Research and Technology in Food and Agriculture, Spain

                *Correspondence: Ruth A. Schmitz, rschmitz@ 123456ifam.uni-kiel.de

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.01105
                5471330
                be366db2-dc6a-44df-8400-33e7186fc434
                Copyright © 2017 Weiland-Bräuer, Fischer, Schramm and Schmitz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2017
                : 31 May 2017
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 141, Pages: 17, Words: 0
                Funding
                Funded by: Bundesministerium für Bildung und Forschung 10.13039/501100002347
                Award ID: 0315587B
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                cryoconite,microbial communities,biodegradation,polychlorinated biphenyls (pcbs),polycyclic aromatic hydrocarbon (pah),organochlorine pesticide (ocp)

                Comments

                Comment on this article