+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.

          Related collections

          Most cited references332

          • Record: found
          • Abstract: found
          • Article: not found

          The basic science of wound healing.

          Understanding wound healing today involves much more than simply stating that there are three phases: "inflammation, proliferation, and maturation." Wound healing is a complex series of reactions and interactions among cells and "mediators." Each year, new mediators are discovered and our understanding of inflammatory mediators and cellular interactions grows. This article will attempt to provide a concise report of the current literature on wound healing by first reviewing the phases of wound healing followed by "the players" of wound healing: inflammatory mediators (cytokines, growth factors, proteases, eicosanoids, kinins, and more), nitric oxide, and the cellular elements. The discussion will end with a pictorial essay summarizing the wound-healing process.
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair.

            The host response to tissue injury requires a complex interplay of diverse cellular, humoral, and connective tissue elements. Fibroblasts participate in this process by proliferating within injured sites and contributing to scar formation and the longterm remodeling of damaged tissue. Fibroblasts present in areas of tissue injury generally have been regarded to arise by recruitment from surrounding connective tissue; however this may not be the only source of these cells. Long-term culture of adherent, human, and murine leukocyte subpopulations was combined with a variety of immunofluorescence and functional analyses to identify a blood-borne cell type with fibroblast-like properties. We describe for the first time a population of circulating cells with fibroblast properties that specifically enter sites of tissue injury. This novel cell type, termed a "fibrocyte," was characterized by its distinctive phenotype (collagen+/vimentin+/CD34+), by its rapid entry from blood into subcutaneously implanted wound chambers, and by its presence in connective tissue scars. Blood-borne fibrocytes contribute to scar formation and may play an important role both in normal wound repair and in pathological fibrotic responses.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis

              Rei Ogawa (2017)
              Keloids and hypertrophic scars are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scars are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scars contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scars suggests that, rather than being skin tumors, keloids and hypertrophic scars are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scars. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scars merely reflect differences in the intensity, frequency, and duration of the inflammation of the reticular dermis. At present, physicians cannot (or at least find it very difficult to) control systemic and genetic risk factors of keloids and hypertrophic scars. However, they can use a number of treatment modalities that all, interestingly, act by reducing inflammation. They include corticosteroid injection/tape/ointment, radiotherapy, cryotherapy, compression therapy, stabilization therapy, 5-fluorouracil (5-FU) therapy, and surgical methods that reduce skin tension.

                Author and article information

                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                26 May 2020
                : 8
                : 360
                [1] 1Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                [2] 2Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                [3] 3Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                [4] 4Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                Author notes

                Edited by: Shiro Jimi, Fukuoka University, Japan

                Reviewed by: Rajprasad Loganathan, Johns Hopkins University, United States; Lydia Masako Ferreira, Federal University of São Paulo, Brazil

                *Correspondence: Susan Gibbs, s.gibbs@ 123456amsterdamumc.nl

                This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology

                Copyright © 2020 Limandjaja, Niessen, Scheper and Gibbs.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                : 02 December 2019
                : 22 April 2020
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 348, Pages: 26, Words: 0
                Cell and Developmental Biology

                keloid,cicatrix, hypertrophic,keloid anatomy and histology,keloid etiology,keloid pathology,keloid heterogeneity,keloid model,keloid phenotype


                Comment on this article