Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Na(+),K(+)-ATPase isoform selectivity for digitalis-like compounds is determined by two amino acids in the first extracellular loop.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Digitalis-like compounds (DLCs) comprise a diverse group of molecules characterized by a cis-trans-cis ring-fused steroid core linked to a lactone. They have been used in the treatment of different medical problems including heart failure, where their inotropic effect on heart muscle is attributed to potent Na(+),K(+)-ATPase inhibition. Their application as drugs, however, has declined in recent past years due to their small safety margin. Since human Na(+),K(+)-ATPase is represented by four different isoforms expressed in a tissue-specific manner, one of the possibilities to improve the therapeutic index of DLCs is to exploit and amend their isoform selectivity. Here, we aimed to reveal the determinants of selectivity of the ubiquitously expressed α1 isoform and the more restricted α2 isoform toward several well-known DLCs and their hydrogenated forms. Using baculovirus to express various mutants of the α2 isoform, we were able to link residues Met(119) and Ser(124) to differences in affinity between the α1 and α2 isoforms to ouabain, dihydro-ouabain, digoxin, and dihydro-digoxin. We speculate that the interactions between these amino acids and DLCs affect the initial binding of these DLCs. Also, we observed isoform selectivity for DLCs containing no sugar groups.

          Related collections

          Author and article information

          Journal
          Chem. Res. Toxicol.
          Chemical research in toxicology
          American Chemical Society (ACS)
          1520-5010
          0893-228X
          Dec 15 2014
          : 27
          : 12
          Affiliations
          [1 ] Departments of †Pharmacology and Toxicology and ‡Biochemistry, Radboud University Medical Center , P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
          Article
          10.1021/tx500290k
          25361285

          Comments

          Comment on this article