12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Current and Potential Therapeutic Strategies for Hemodynamic Cardiorenal Syndrome

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Cardiorenal syndrome (CRS) encompasses conditions in which cardiac and renal disorders co-exist and are pathophysiologically related. The newest classification of CRS into seven etiologically and clinically distinct types for direct patient management purposes includes hemodynamic, uremic, vascular, neurohumoral, anemia- and/or iron metabolism-related, mineral metabolism-related and protein-energy wasting-related CRS. This classification also emphasizes the pathophysiologic pathways. The leading CRS category remains hemodynamic CRS, which is the most commonly encountered type in patient care settings and in which acute or chronic heart failure leads to renal impairment. Summary: This review focuses on selected therapeutic strategies for the clinical management of hemodynamic CRS. This is often characterized by an exceptionally high ratio of serum urea to creatinine concentrations. Loop diuretics, positive inotropic agents including dopamine and dobutamine, vasopressin antagonists including vasopressin receptor antagonists such as tolvaptan, nesiritide and angiotensin-neprilysin inhibitors are among the pharmacologic agents used. Additional therapies include ultrafiltration (UF) via hemofiltration or dialysis. The beneficial versus unfavorable effects of these therapies on cardiac decongestion versus renal blood flow may act in opposite directions. Some of the most interesting options for the outpatient setting that deserve revisiting include portable continuous dobutamine infusion, peritoneal dialysis and outpatient UF via hemodialysis or hemofiltration. Key Messages: The new clinically oriented CRS classification system is helpful in identifying therapeutic targets and offers a systematic approach to an optimal management algorithm with better understanding of etiologies. Most interventions including UF have not shown a favorable impact on outcomes. Outpatient portable dobutamine infusion is underutilized and not well studied. Revisiting traditional and novel strategies for outpatient management of CRS warrants clinical trials.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiorenal syndrome.

            The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diuretic strategies in patients with acute decompensated heart failure.

              Loop diuretics are an essential component of therapy for patients with acute decompensated heart failure, but there are few prospective data to guide their use. In a prospective, double-blind, randomized trial, we assigned 308 patients with acute decompensated heart failure to receive furosemide administered intravenously by means of either a bolus every 12 hours or continuous infusion and at either a low dose (equivalent to the patient's previous oral dose) or a high dose (2.5 times the previous oral dose). The protocol allowed specified dose adjustments after 48 hours. The coprimary end points were patients' global assessment of symptoms, quantified as the area under the curve (AUC) of the score on a visual-analogue scale over the course of 72 hours, and the change in the serum creatinine level from baseline to 72 hours. In the comparison of bolus with continuous infusion, there was no significant difference in patients' global assessment of symptoms (mean AUC, 4236±1440 and 4373±1404, respectively; P=0.47) or in the mean change in the creatinine level (0.05±0.3 mg per deciliter [4.4±26.5 μmol per liter] and 0.07±0.3 mg per deciliter [6.2±26.5 μmol per liter], respectively; P=0.45). In the comparison of the high-dose strategy with the low-dose strategy, there was a nonsignificant trend toward greater improvement in patients' global assessment of symptoms in the high-dose group (mean AUC, 4430±1401 vs. 4171±1436; P=0.06). There was no significant difference between these groups in the mean change in the creatinine level (0.08±0.3 mg per deciliter [7.1±26.5 μmol per liter] with the high-dose strategy and 0.04±0.3 mg per deciliter [3.5±26.5 μmol per liter] with the low-dose strategy, P=0.21). The high-dose strategy was associated with greater diuresis and more favorable outcomes in some secondary measures but also with transient worsening of renal function. Among patients with acute decompensated heart failure, there were no significant differences in patients' global assessment of symptoms or in the change in renal function when diuretic therapy was administered by bolus as compared with continuous infusion or at a high dose as compared with a low dose. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT00577135.).
                Bookmark

                Author and article information

                Journal
                CRM
                Cardiorenal Med
                10.1159/issn.1664-5502
                Cardiorenal Medicine
                S. Karger AG
                1664-3828
                1664-5502
                2016
                February 2016
                06 November 2015
                : 6
                : 2
                : 83-98
                Affiliations
                aDivision of Nephrology and Hypertension and bDepartment of Medicine, University of California Irvine, and cHarold Simmons Center for Kidney Disease Research and Epidemiology, Orange, Calif., dDivision of Nephrology, University of Tennessee Health Sciences Center, Memphis, Tenn., and eDepartment of Medicine, VA Long Beach Health Care System, Long Beach, Calif., USA; fDepartment of Medicine, Inje University, Busan, South Korea
                Author notes
                *Kamyar Kalantar-Zadeh, MD, MPH, PhD, Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California Irvine Medical Center, 101 The City Drive South, City Tower, Suite 400, Orange, CA 92868 (USA), E-Mail kkz@uci.edu
                Article
                441283 PMC4790039 Cardiorenal Med 2016;6:83-98
                10.1159/000441283
                PMC4790039
                26989394
                be62d1d5-a964-4107-b4da-cc3a6077fe3a
                © 2015 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 2, Tables: 2, References: 84, Pages: 16
                Categories
                Review

                Cardiovascular Medicine,Nephrology
                Heart failure,Ultrafiltration,Acute kidney injury,Cardiorenal syndrome,Chronic kidney disease,Dobutamine

                Comments

                Comment on this article