7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Drugs and the liver

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The liver is a major organ with multiple functions. A number of drugs are metabolized by the liver during phase 1 and 2 reactions which include complex processes involving cytochrome P450 enzymes. Genetic and acquired variability in cytochrome P450 activity may have profound effects on pharmacokinetics. Additionally, drugs can also modify how the liver functions and cause dysfunction or even failure of the organ both by a direct effect on the liver or by alteration in liver blood flow. It is important to recognize the signs and symptoms of liver failure in patients and identify possible causes including drug interactions. Furthermore, once a patient has been recognized to be suffering with liver dysfunction or failure drug choice and dosing regime will need to be rationalized.

          Paracetamol overdose can have severe and life threatening consequences for patients due to its effect on liver function. It is the leading cause of acute liver failure in the UK, 1 Correct and early management is crucial and will be discussed within this article.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liver injury in COVID-19: management and challenges

            In December, 2019, an outbreak of a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], previously 2019-nCoV) started in Wuhan, China, and has since become a global threat to human health. The number of confirmed cases of 2019 coronavirus disease (COVID-19) has reached 87 137 worldwide as of March 1, 2020, according to WHO COVID-19 situation report 41; most of these patients are in Wuhan, China. Many cases of COVID-19 are acute and resolve quickly, but the disease can also be fatal, with a mortality rate of around 3%. 1 Onset of severe disease can result in death due to massive alveolar damage and progressive respiratory failure. 2 SARS-CoV-2 shares 82% genome sequence similarity to SARS-CoV and 50% genome sequence homology to Middle East respiratory syndrome coronavirus (MERS-CoV)—all three coronaviruses are known to cause severe respiratory symptoms. Liver impairment has been reported in up to 60% of patients with SARS 3 and has also been reported in patients infected with MERS-CoV. 4 At least seven relatively large-scale case studies have reported the clinical features of patients with COVID-19.1, 5, 6, 7, 8, 9, 10 In this Comment, we assess how the liver is affected using the available case studies and data from The Fifth Medical Center of PLS General Hospital, Beijing, China. These data indicate that 2–11% of patients with COVID-19 had liver comorbidities and 14–53% cases reported abnormal levels of alanine aminotransferase and aspartate aminotransferase (AST) during disease progression (table ). Patients with severe COVID-19 seem to have higher rates of liver dysfunction. In a study in The Lancet by Huang and colleagues, 5 elevation of AST was observed in eight (62%) of 13 patients in the intensive care unit (ICU) compared with seven (25%) of 28 patients who did not require care in the ICU. Moreover, in a large cohort including 1099 patients from 552 hospitals in 31 provinces or provincial municipalities, more severe patients with disease had abnormal liver aminotransferase levels than did non-severe patients with disease. 1 Furthermore, in another study, 8 patients who had a diagnosis of COVID-19 confirmed by CT scan while in the subclinical phase (ie, before symptom onset) had significantly lower incidence of AST abnormality than did patients diagnosed after the onset of symptoms. Therefore, liver injury is more prevalent in severe cases than in mild cases of COVID-19. Table Comorbidity with liver disease and liver dysfunction in patients with SARS-CoV-2 infection Patients with SARS-CoV-2 infection Patients with pre-existing liver conditions Patients with abnormal liver function Notes Guan et al 1 1099 23 (2·3%) AST abnormal (22·2%), ALT abnormal (21·3%) Elevated levels of AST were observed in 112 (18·2%) of 615 patients with non-severe disease and 56 (39·4%) of 142 patients with severe disease. Elevated levels of ALT were observed in 120 (19·8%) of patients with non-severe disease and 38 (28·1%) of 135 patients with severe disease. Huang et al 5 41 1 (2·0%) 15 (31·0%) Patients with severe disease had increased incidence of abnormal liver function. Elevation of AST level was observed in eight (62%) of 13 patients in the ICU compared with seven (25%) 25 patients who did not require care in the ICU. Chen et al 6 99 NA 43 (43·0%) One patient with severe liver function damage. Wang et al 7 138 4 (2·9%) NA .. Shi et al 8 81 7 (8·6%) 43 (53·1%) Patients who had a diagnosis of COVID-19 confirmed by CT scan while in the subclinical phase had significantly lower incidence of AST abnormality than did patients diagnosed after the onset of symptoms. Xu et al 9 62 7 (11·0%) 10 (16·1%) .. Yang et al 10 52 NA 15 (29·0%) No difference for the incidences of abnormal liver function between survivors (30%) and non-survivors (28%). Our data (unpublished) 56 2 (3·6%) 16 (28·6%) One fatal case, with evaluated liver injury. 13 AST= aspartate aminotransferase. ALT= alanine aminotransferase. ICU=intensive care unit. Liver damage in patients with coronavirus infections might be directly caused by the viral infection of liver cells. Approximately 2–10% of patients with COVID-19 present with diarrhoea, and SARS-CoV-2 RNA has been detected in stool and blood samples. 11 This evidence implicates the possibility of viral exposure in the liver. Both SARS-CoV-2 and SARS-CoV bind to the angiotensin-converting enzyme 2 (ACE2) receptor to enter the target cell, 7 where the virus replicates and subsequently infects other cells in the upper respiratory tract and lung tissue; patients then begin to have clinical symptoms and manifestations. Pathological studies in patients with SARS confirmed the presence of the virus in liver tissue, although the viral titre was relatively low because viral inclusions were not observed. 3 In patients with MERS, viral particles were not detectable in liver tissue. 4 Gamma-glutamyl transferase (GGT), a diagnostic biomarker for cholangiocyte injury, has not been reported in the existing COVID-19 case studies; we found that it was elevated in 30 (54%) of 56 patients with COVID-19 during hospitalisation in our centre (unpublished). We also found that elevated alkaline phosphatase levels were observed in one (1·8%) of 56 patients with COVID-19 during hospitalisation. A preliminary study (albeit not peer-reviewed) suggested that ACE2 receptor expression is enriched in cholangiocytes, 12 indicating that SARS-CoV-2 might directly bind to ACE2-positive cholangiocytes to dysregulate liver function. Nevertheless, pathological analysis of liver tissue from a patient who died from COVID-19 showed that viral inclusions were not observed in the liver. 13 It is also possible that the liver impairment is due to drug hepatotoxicity, which might explain the large variation observed across the different cohorts. In addition, immune-mediated inflammation, such as cytokine storm and pneumonia-associated hypoxia, might also contribute to liver injury or even develop into liver failure in patients with COVID-19 who are critically ill. Liver damage in mild cases of COVID-19 is often transient and can return to normal without any special treatment. However, when severe liver damage occurs, liver protective drugs have usually been given to such patients in our unit. Chronic liver disease represents a major disease burden globally. Liver diseases including chronic viral hepatitis, non-alcoholic fatty liver disease, and alcohol-related liver disease affect approximately 300 million people in China. Given this high burden, how different underlying liver conditions influence liver injury in patients with COVID-19 needs to be meticulously evaluated. However, the exact cause of pre-existing liver conditions has not been outlined in the case studies of COVID-19 and the interaction between existing liver disease and COVID-19 has not been studied. Immune dysfunction—including lymphopenia, decreases of CD4+ T-cell levels, and abnormal cytokine levels (including cytokine storm)—is a common feature in cases of COVID-19 and might be a critical factor associated with disease severity and mortality. For patients with chronic hepatitis B in immunotolerant phases or with viral suppression under long-term treatment with nucleos(t)ide analogues, evidence of persistent liver injury and active viral replication after co-infection with SARS-CoV-2 need to be further investigated. In patients with COVID-19 with autoimmune hepatitis, the effects of administration of glucocorticoids on disease prognosis is unclear. Given the expression of the ACE2 receptor in cholangiocytes, whether infection with SARS-CoV-2 aggravates cholestasis in patients with primary biliary cholangitis, or leads to an increase in alkaline phosphatase and GGT, also needs to be monitored. Moreover, patients with COVID-19 with liver cirrhosis or liver cancer might be more susceptible to SARS-CoV-2 infection because of their systemic immunocompromised status. The severity, mortality, and incidence of complications in these patients, including secondary infection, hepatic encephalopathy, upper gastrointestinal bleeding, and liver failure, need to be examined in large-cohort clinical studies. Considering their immunocompromised status, more intensive surveillance or individually tailored therapeutic approaches is needed for severe patients with COVID-19 with pre-existing conditions such as advanced liver disease, especially in older patients with other comorbidities. Further research should focus on the causes of liver injury in COVID-19 and the effect of existing liver-related comorbidities on treatment and outcome of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Liver injury during highly pathogenic human coronavirus infections

              Abstract The severe acute respiratory syndrome coronavirus 2 (SARS‐Cov‐2), the pathogen of 2019 novel coronavirus disease (COVID‐19), has posed a serious threat to global public health. The WHO has declared the outbreak of SARS‐CoV‐2 infection an international public health emergency. Lung lesions have been considered as the major damage caused by SARS‐CoV‐2 infection. However, liver injury has also been reported to occur during the course of the disease in severe cases. Similarly, previous studies have shown that liver damage was common in the patients infected by the other two highly pathogenic coronavirus – severe acute respiratory syndrome coronavirus (SARS‐CoV) and the Middle East respiratory syndrome coronavirus (MERS‐CoV), and associated with the severity of diseases. In this review, the characteristics and mechanism of liver injury caused by SARS‐CoV, MERS‐CoV as well as SARS‐CoV‐2 infection were summarized, which may provide help for further studies on the liver injury of COVID‐19.
                Bookmark

                Author and article information

                Journal
                Anaesthesia and Intensive Care Medicine
                Published by Elsevier Ltd.
                1472-0299
                1472-0299
                22 September 2020
                22 September 2020
                Affiliations
                [1] Rakesh Vaja BSc MBChB FRCA FFICM is a consultant in Intensive Care Medicine & Anaesthesia at University Hospitals of Leicester NHS Trust, Leicester, UK. Conflicts of interest: none declared
                [2] Meenal Rana MBBS MD FRCA is a cardiothoracic fellow at University Hospitals of Leicester NHS Trust, UK. Conflicts of interest: none declared
                Article
                S1472-0299(20)30139-9
                10.1016/j.mpaic.2020.07.001
                7508170
                be742e73-0562-4b3f-88d7-82deed560aac
                © 2020 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Pharmacology

                aracetamol overdose,cytochrome p450,hepatic failure,liver,metabolism,pharmacokinetics

                Comments

                Comment on this article