14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus). Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami–AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Non-classical protein secretion in bacteria

          Background We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. Results A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. Conclusion We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Moonlighting proteins: old proteins learning new tricks.

            Recently, several laboratories identifying proteins involved in the complex processes of replication, transcription and tumor suppression found that the 'new' protein they discovered had another, previously identified, function. A single protein with multiple functions might seem surprising, but there are actually many cases of proteins that 'moonlight', or have more than one role in an organism. As well as adding to the number and types of proteins that are known to moonlight, these new examples add to our understanding of the potential importance of moonlighting proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children.

              The composition of the upper respiratory tract microbial community may influence the risk for colonization by the acute otitis media (AOM) pathogens Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. We used culture-independent methods to describe upper respiratory tract microbial communities in healthy children and children with upper respiratory tract infection with and without concurrent AOM. Nasal swabs and data were collected in a cross-sectional study of 240 children between 6 months and 3 years of age. Swabs were cultured for S. pneumoniae, and real-time PCR was used to identify S. pneumoniae, H. influenzae, and M. catarrhalis. The V1-V2 16S rRNA gene regions were sequenced using 454 pyrosequencing. Microbial communities were described using a taxon-based approach. Colonization by S. pneumoniae, H. influenzae, and M. catarrhalis was associated with lower levels of diversity in upper respiratory tract flora. We identified commensal taxa that were negatively associated with colonization by each AOM bacterial pathogen and with AOM. The balance of these relationships differed according to the colonizing AOM pathogen and history of antibiotic use. Children with antibiotic use in the past 6 months and a greater abundance of taxa, including Lactococcus and Propionibacterium, were less likely to have AOM than healthy children (odds ratio [OR], 0.46; 95% confidence interval [CI], 0.25 to 0.85). Children with no antibiotic use in the past 6 months, a low abundance of Streptococcus and Haemophilus, and a high abundance of Corynebacterium and Dolosigranulum were less likely to have AOM (OR, 0.51; 95% CI, 0.31 to 0.83). An increased understanding of polymicrobial interactions will facilitate the development of effective AOM prevention strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 January 2018
                2017
                : 8
                : 2688
                Affiliations
                [1] 1Institute for Infectious Diseases, Faculty of Medicine, University of Bern , Bern, Switzerland
                [2] 2Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern, Switzerland
                [3] 3Department of Clinical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern , Bern, Switzerland
                Author notes

                Edited by: Mattias Collin, Lund University, Sweden

                Reviewed by: Samantha J. King, The Ohio State University, United States; Alessandra Polissi, Università degli Studi di Milano, Italy

                *Correspondence: Lucy J. Hathaway, lucy.hathaway@ 123456ifik.unibe.ch

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.02688
                5775242
                29379482
                be75a97f-5f90-4f6e-a198-5c052e883f44
                Copyright © 2018 Nasher, Heller and Hathaway.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 October 2017
                : 26 December 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 29, Pages: 7, Words: 0
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Award ID: 162808
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                streptococcus pneumoniae,peptide,abc transporter,ami–alia/alib permease,interspecies communication

                Comments

                Comment on this article