0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The future of phosphate binders: a perspective on novel therapeutics

      , , , ,   ,
      Expert Opinion on Investigational Drugs
      Informa Healthcare

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men.

          The renal handling of inorganic phosphate (Pi) is controlled not only by PTH, but also by hitherto undetermined mechanisms dependent on phosphate intake. Recently, fibroblast growth factor (FGF)-23 was identified as a novel phosphaturic factor in tumor-induced osteomalacia and autosomal-dominant hypophosphatemic rickets. We hypothesized that phosphate intake could influence FGF-23 concomitantly to the changes in renal Pi handling. Twenty-nine healthy males were subjected to a 5-d low-phosphate diet and a phosphate binder, followed by a high-phosphate diet including supplements. Concomitant modifications in calcium intake allowed minimizing PTH changes in response to dietary phosphate. Serum FGF-23 levels significantly decreased on the low-phosphate diet, then increased with the oral phosphate load. Changes in FGF-23 were positively correlated with changes in 24-h urinary Pi excretion and negatively correlated with changes in the maximal tubular reabsorption of Pi and 1,25(OH)(2)D(3) (calcitriol), whereas PTH was not. In multivariate analysis, changes in FGF-23 remained the most significantly correlated to changes in 1,25(OH)(2)D(3) and maximal tubular reabsorption of Pi. Moreover, FGF-23 was positively correlated to serum osteocalcin, a marker of osteoblastic activity. In summary, FGF-23 was inversely related to renal Pi transport and serum calcitriol levels in healthy young men. These data suggest that FGF-23 may be implicated in the physiological regulation of Pi homeostasis in response to dietary phosphate changes, independent of PTH.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality.

            Chronic kidney disease-mineral and bone disorder (CKD-MBD) is associated with secondary hyperparathyroidism (HPT) and serum elevations in the phosphaturic hormone FGF23, which may be maladaptive and lead to increased morbidity and mortality. To determine the role of FGF23 in the pathogenesis of CKD-MBD and development of secondary HPT, we developed a monoclonal FGF23 antibody to evaluate the impact of chronic FGF23 neutralization on CKD-MBD, secondary HPT, and associated comorbidities in a rat model of CKD-MBD. CKD-MBD rats fed a high-phosphate diet were treated with low or high doses of FGF23-Ab or an isotype control antibody. Neutralization of FGF23 led to sustained reductions in secondary HPT, including decreased parathyroid hormone, increased vitamin D, increased serum calcium, and normalization of bone markers such as cancellous bone volume, trabecular number, osteoblast surface, osteoid surface, and bone-formation rate. In addition, we observed dose-dependent increases in serum phosphate and aortic calcification associated with increased risk of mortality in CKD-MBD rats treated with FGF23-Ab. Thus, mineral disturbances caused by neutralization of FGF23 limited the efficacy of FGF23-Ab and likely contributed to the increased mortality observed in this CKD-MBD rat model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease.

              Disturbances in phosphate homeostasis are common in patients with chronic kidney disease. As kidney function declines, circulating concentrations of phosphate and the phosphate-regulatory hormone, fibroblast growth factor (FGF)-23, rise progressively. Higher serum levels of phosphate and FGF-23 are associated with an increased risk of adverse outcomes, including all-cause mortality and cardiovascular events. The associations between higher FGF-23 levels and adverse cardiovascular outcomes are generally independent of serum phosphate levels, and might be strongest for congestive heart failure. Higher serum phosphate levels are also modestly associated with an increased risk of cardiovascular events even after accounting for FGF-23 levels. This observation suggests that FGF-23 and phosphate might promote distinct mechanisms of cardiovascular toxicity. Indeed, animal models implicate high serum phosphate as a mechanism of vascular calcification and endothelial dysfunction, whereas high levels of FGF-23 are implicated in left ventricular hypertrophy. These seemingly distinct, but perhaps additive, adverse effects of phosphate on the vasculature and FGF-23 on the heart suggest that future population-level and individual-level interventions will need to simultaneously target these molecules to reduce the risk of associated cardiovascular events.
                Bookmark

                Author and article information

                Journal
                Expert Opinion on Investigational Drugs
                Expert Opinion on Investigational Drugs
                Informa Healthcare
                1354-3784
                1744-7658
                September 22 2014
                September 22 2014
                : 23
                : 11
                : 1459-1463
                Article
                10.1517/13543784.2014.962652
                be7ddc0d-8bd2-4e45-a10c-700d805b3083
                © 2014
                History

                Comments

                Comment on this article