6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We developed single-crystal poly(3,4-ethylenedioxythiopene) (PEDOT) nanowires with ultrahigh conductivity using liquid-bridge-mediated nanotransfer printing with vapor phase polymerization. The single-crystal PEDOT nanowires are formed from 3,4-ethylenedioxythiophene (EDOT) monomers that are self-assembled and crystallized during vapor phase polymerization process within nanoscale channels of a mold having FeCl3 catalysts. These PEDOT nanowires, aligned according to the pattern in the mold, are then directly transferred to specific positions on a substrate to generate a nanowire array by a direct printing process. The PEDOT nanowires have closely packed single-crystalline structures with orthorhombic lattice units. The conductivity of the single-crystal PEDOT nanowires is an average of 7619 S/cm with the highest up to 8797 S/cm which remarkably exceeds literature values of PEDOT nanostructures/thin films. Such distinct conductivity enhancement of single-crystal PEDOT nanowires can be attributed to improved carrier mobility in PEDOT nanowires. To demonstrate usefulness of single-crystal PEDOT nanowires, we fabricated an organic nanowire field-effect transistor array contacting the ultrahigh conductive PEDOT nanowires as metal electrodes.

          Related collections

          Author and article information

          Journal
          Nano Lett.
          Nano letters
          American Chemical Society (ACS)
          1530-6992
          1530-6984
          Jun 11 2014
          : 14
          : 6
          Affiliations
          [1 ] Department of Chemistry, Hanyang University , Seoul 133-791, Korea.
          Article
          10.1021/nl500748y
          24848306
          be9f5aab-f841-4140-9945-bf5967b6f44b
          History

          Comments

          Comment on this article