42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The most appropriate tidal volume in patients without acute respiratory distress syndrome (ARDS) is controversial and has not been rigorously examined. Our objective was to determine whether a mechanical ventilation strategy using lower tidal volume is associated with a decreased incidence of progression to ARDS when compared with a higher tidal volume strategy.

          Methods

          A systematic search of MEDLINE, EMBASE, CINAHL, the Cochrane Library, conference proceedings, and clinical trial registration was performed with a comprehensive strategy. Studies providing information on mechanically ventilated patients without ARDS at the time of initiation of mechanical ventilation, and in which tidal volume was independently studied as a predictor variable for outcome, were included. The primary outcome was progression to ARDS.

          Results

          The search yielded 1,704 studies, of which 13 were included in the final analysis. One randomized controlled trial was found; the remaining 12 studies were observational. The patient cohorts were significantly heterogeneous in composition and baseline risk for developing ARDS; therefore, a meta-analysis of the data was not performed. The majority of the studies ( n = 8) showed a decrease in progression to ARDS with a lower tidal volume strategy. ARDS developed early in the course of illness (5 hours to 3.7 days). The development of ARDS was associated with increased mortality, lengths of stay, mechanical ventilation duration, and nonpulmonary organ failure.

          Conclusions

          In mechanically ventilated patients without ARDS at the time of endotracheal intubation, the majority of data favors lower tidal volume to reduce progression to ARDS. However, due to significant heterogeneity in the data, no definitive recommendations can be made. Further randomized controlled trials examining the role of lower tidal volumes in patients without ARDS, controlling for ARDS risk, are needed.

          2013 Fuller et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials.

          The CONSORT (Consolidated Standards of Reporting Trials) statement is used worldwide to improve the reporting of randomized, controlled trials. Schulz and colleagues describe the latest version, CONSORT 2010, which updates the reporting guideline based on new methodological evidence and accumulating experience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

            Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis.

              Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2013
                18 January 2013
                18 January 2014
                : 17
                : 1
                : R11
                Affiliations
                [1 ]Department of Anesthesiology, Division of Critical Care, Division of Emergency Medicine, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO, USA
                [2 ]Department of Emergency Medicine, Department of Anesthesia, Division of Critical Care, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, USA
                [3 ]Department of Anesthesiology, Division of Critical Care, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO, USA
                [4 ]Division of Emergency Medicine, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO, USA
                Article
                cc11936
                10.1186/cc11936
                3983656
                23331507
                bea0721b-0d25-4e95-a083-adf226323e7e
                Copyright © 2013 Fuller et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 September 2012
                : 18 January 2013
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article