3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular phylogeny of rootworms and related galerucine beetles (Coleoptera: Chrysomelidae)

      , , ,
      Zoologica Scripta
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.

          An improved dynamic programming algorithm is reported for RNA secondary structure prediction by free energy minimization. Thermodynamic parameters for the stabilities of secondary structure motifs are revised to include expanded sequence dependence as revealed by recent experiments. Additional algorithmic improvements include reduced search time and storage for multibranch loop free energies and improved imposition of folding constraints. An extended database of 151,503 nt in 955 structures? determined by comparative sequence analysis was assembled to allow optimization of parameters not based on experiments and to test the accuracy of the algorithm. On average, the predicted lowest free energy structure contains 73 % of known base-pairs when domains of fewer than 700 nt are folded; this compares with 64 % accuracy for previous versions of the algorithm and parameters. For a given sequence, a set of 750 generated structures contains one structure that, on average, has 86 % of known base-pairs. Experimental constraints, derived from enzymatic and flavin mononucleotide cleavage, improve the accuracy of structure predictions. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Analyzing Large Data Sets in Reasonable Times: Solutions for Composite Optima

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

              Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.
                Bookmark

                Author and article information

                Journal
                Zoologica Scripta
                Zool Scripta
                Wiley
                0300-3256
                1463-6409
                March 2008
                March 2008
                : 37
                : 2
                : 195-222
                Article
                10.1111/j.1463-6409.2007.00320.x
                bea3e7fd-4ac3-49c8-a129-7f663ab8de64
                © 2008

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article