25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes in adolescence

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry.

          To examine the overall state of metabolic control and current use of advanced diabetes technologies in the U.S., we report recent data collected on individuals with type 1 diabetes participating in the T1D Exchange clinic registry. Data from 16,061 participants updated between 1 September 2013 and 1 December 2014 were compared with registry enrollment data collected from 1 September 2010 to 1 August 2012. Mean hemoglobin A1c (HbA1c) was assessed by year of age from 75 years. The overall average HbA1c was 8.2% (66 mmol/mol) at enrollment and 8.4% (68 mmol/mol) at the most recent update. During childhood, mean HbA1c decreased from 8.3% (67 mmol/mol) in 2-4-year-olds to 8.1% (65 mmol/mol) at 7 years of age, followed by an increase to 9.2% (77 mmol/mol) in 19-year-olds. Subsequently, mean HbA1c values decline gradually until ∼30 years of age, plateauing at 7.5-7.8% (58-62 mmol/mol) beyond age 30 until a modest drop in HbA1c below 7.5% (58 mmol/mol) in those 65 years of age. Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) remain all too common complications of treatment, especially in older (SH) and younger patients (DKA). Insulin pump use increased slightly from enrollment (58-62%), and use of continuous glucose monitoring (CGM) did not change (7%). Although the T1D Exchange registry findings are not population based and could be biased, it is clear that there remains considerable room for improving outcomes of treatment of type 1 diabetes across all age-groups. Barriers to more effective use of current treatments need to be addressed and new therapies are needed to achieve optimal metabolic control in people with type 1 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes.

            Patients with insulin-dependent diabetes mellitus often have poor metabolic control during puberty. To determine whether puberty is associated with decreased insulin-stimulated glucose metabolism, we compared the results of euglycemic insulin-clamp studies in adults and prepubertal and pubertal children with and without insulin-dependent diabetes. In nondiabetic pubertal children, insulin-stimulated glucose metabolism (201 +/- 12 mg per square meter of body surface area per minute) was sharply reduced, as compared with that of prepubertal children and adults (316 +/- 34 and 290 +/- 21 mg per square meter, respectively; P less than 0.01), despite comparable hyperinsulinemia (insulin levels of 80 to 90 microU per milliliter). Similarly, the response to insulin was 25 to 30 percent lower in the diabetic pubertal children than in the diabetic prepubertal children (P less than 0.05) and adults (P = 0.07). At each stage of development, the stimulating effect of insulin on glucose metabolism was decreased by 33 to 42 percent in the children with diabetes (P less than 0.01). In all the groups of children studied, the response to insulin was inversely correlated with mean 24-hour levels of growth hormone (r = -0.52, P = 0.01). Among the diabetic children, the glycosylated hemoglobin levels were substantially higher in the pubertal children than in the prepubertal children (P less than 0.02), although the daily insulin doses tended to be higher. These data suggest that insulin resistance occurs during puberty in both normal children and children with diabetes. The combined adverse effects of puberty and diabetes on insulin action may help explain why control of glycemia is so difficult to achieve in adolescent patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The T1D Exchange clinic registry.

              The T1D Exchange includes a clinic-based registry, a patient-centric web site called Glu, and a biobank. The aim of the study was to describe the T1D Exchange clinic registry and provide an overview of participant characteristics. Data obtained through participant completion of a questionnaire and chart extraction include diabetes history, management, and monitoring; general health; lifestyle; family history; socioeconomic factors; medications; acute and chronic diabetic complications; other medical conditions; and laboratory results. Data were collected from 67 endocrinology centers throughout the United States. We studied 25,833 adults and children with presumed autoimmune type 1 diabetes (T1D). Participants ranged in age from less than 1 to 93 yr, 50% were female, 82% were Caucasian, 50% used an insulin pump, 6% used continuous glucose monitoring, and 16% had a first-degree family member with T1D. Glycosylated hemoglobin at enrollment averaged 8.3% and was highest in 13 to 25 yr olds. The prevalence of renal disease was ≤4% until T1D was present for at least 10 yr, and retinopathy treatment was ≤2% until T1D was present for at least 20 yr. A severe hypoglycemic event (seizure or coma) in the prior 12 months was reported by 7% of participants and diabetic ketoacidosis in the prior 12 months by 8%. The T1D Exchange clinic registry provides a database of important information on individuals with T1D in the United States. The rich dataset of the registry provides an opportunity to address numerous issues of relevance to clinicians and patients, including assessments of associations between patient characteristics and diabetes management factors with outcomes.
                Bookmark

                Author and article information

                Journal
                Pediatric Diabetes
                Pediatr Diabetes
                Wiley
                1399543X
                October 2018
                October 2018
                October 01 2018
                : 19
                : 250-261
                Affiliations
                [1 ]Royal Children's Hospital; Melbourne Australia
                [2 ]Murdoch Children's Research Institute; Melbourne Australia
                [3 ]Department of Paediatrics; University of Melbourne; Melbourne Australia
                [4 ]Division of Endocrinology; Boston Children's Hospital; Boston Massachusetts
                [5 ]Department of Pediatrics; Stanford University School of Medicine; Palo Alto California
                [6 ]Department of Paediatrics; University of Cambridge; Cambridge UK
                [7 ]Instituto de Investigaciones Materno Infantil, Facultad de Medicina; University of Chile; Santiago Chile
                Article
                10.1111/pedi.12702
                29900653
                beb2ee01-60b8-4d6d-b520-5e16b58ecd82
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article