15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Inflammation in Age-Related Macular Degeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Age-related macular degeneration (AMD) is a blinding eye disease which incidence gradually increases with age. Inflammation participates in AMD pathogenesis, including choroidal neovascularization and geographic atrophy. It is also a kind of self-protective regulation from injury for the eyes. In this review, we described inflammation in AMD pathogenesis, summarized the roles played by inflammation-related cytokines, including pro-inflammatory and anti-inflammatory cytokines, as well as leukocytes (macrophages, dendritic cells, neutrophils, T lymphocytes and B lymphocytes) in the innate or adaptive immunity in AMD. Possible clinical applications such as potential diagnostic biomarkers and anti-inflammatory therapies were also discussed. This review overviews the inflammation as a target of novel effective therapies in treating AMD.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming Growth Factor-β Signaling in Immunity and Cancer

          Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Neutrophil’s Role During Health and Disease

            Neutrophils have always been considered as uncomplicated front-line troopers of the innate immune system equipped with limited proinflammatory duties. Yet recently, the role of the neutrophil has been undergoing a rejuvenation of sorts. Neutrophils are now considered complex cells capable of a significant array of specialized functions, and as an effector of the innate immune response, they are able to regulate many processes such as acute injury and repair, cancer, autoimmunity, and chronic inflammatory processes. Furthermore, evidence exists to indicate that neutrophils also contribute to adaptive immunity by aiding the development of specific adaptive immune responses or guiding the subsequent adaptive immune response. With this revived interest in neutrophils and their many novel functions, it is prudent to review what is currently known about neutrophils and, even more importantly, understand what information is lacking. We discuss the essential features of the neutrophil, from its origins, lifespan, subsets, margination and sequestration of the neutrophil to the death of the neutrophil. We highlight neutrophil recruitment to both infected and injured tissues and outline differences in recruitment of neutrophils between different tissues. Finally, we examine how neutrophils use different mechanisms to either bolster protective immune responses or negatively cause pathological outcomes at different locations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ten years of anti-vascular endothelial growth factor therapy.

              The targeting of vascular endothelial growth factor A (VEGFA), a crucial regulator of both normal and pathological angiogenesis, has revealed innovative therapeutic approaches in oncology and ophthalmology. The first VEGFA inhibitor, bevacizumab, was approved by the US Food and Drug Administration in 2004 for the first-line treatment of metastatic colorectal cancer, and the first VEGFA inhibitors in ophthalmology, pegaptanib and ranibizumab, were approved in 2004 and 2006, respectively. To mark this tenth anniversary of anti-VEGFA therapy, we discuss the discovery of VEGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2020
                23 September 2020
                : 16
                : 15
                : 2989-3001
                Affiliations
                [1 ]Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China;
                [2 ]Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China;
                [3 ]Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
                Author notes
                ✉ Corresponding author: Yedi Zhou, MD, PhD, Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. Telephone: +86-731-85292175; E-mail: zhouyedi@ 123456csu.edu.cn

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv16p2989
                10.7150/ijbs.49890
                7545698
                33061811
                bed5ed15-c97d-4702-960d-8ef68f4ae02f
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 24 June 2020
                : 10 September 2020
                Categories
                Review

                Life sciences
                inflammation,cytokine,leukocyte,age-related macular degeneration
                Life sciences
                inflammation, cytokine, leukocyte, age-related macular degeneration

                Comments

                Comment on this article