26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systems Biology Analysis Merging Phenotype, Metabolomic and Genomic Data Identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and Cellular Maintenance Processes as Major Contributors to Genetic Variability in Bovine Feed Efficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 ( TP53) and Transforming Growth Factor beta 1 ( TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as observed in our study.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

          Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

            Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              LIPID MAPS online tools for lipid research

              The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemical structures, along with corresponding systematic names and ontological information. The structure-drawing tools are available for six categories of lipids: (i) fatty acyls, (ii) glycerolipids, (iii) glycerophospholipids, (iv) cardiolipins, (v) sphingolipids and (vi) sterols. Within each category, the structure-drawing tools support the specification of various parameters such as chain lengths at a specific sn position, head groups, double bond positions and stereochemistry to generate a specific lipid structure. The structure-drawing tools have also been integrated with a second set of online tools which predict possible lipid structures from precursor-ion and product-ion MS experimental data. The MS prediction tools are available for three categories of lipids: (i) mono/di/triacylglycerols, (ii) glycerophospholipids and (iii) cardiolipins. The LIPID MAPS online tools are publicly available at www.lipidmaps.org/tools/.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 April 2015
                2015
                : 10
                : 4
                : e0124574
                Affiliations
                [1 ]Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Genome Physiology Unit, Dummerstorf, Germany
                [2 ]Leibniz Institute for Farm Animal Biology, Institute for Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
                [3 ]Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany
                [4 ]CSIRO Agriculture Flagship, Brisbane, Australia
                [5 ]Weill Cornell Medical College in Qatar, Doha, State of Qatar
                [6 ]Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
                [7 ]Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
                University of Lleida, SPAIN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PW CK. Performed the experiments: PW RW. Analyzed the data: PW AR CK. Contributed reagents/materials/analysis tools: HMH EA KS. Wrote the paper: PW AR RW CK.

                Article
                PONE-D-14-31863
                10.1371/journal.pone.0124574
                4398489
                25875852
                bed6410c-65d6-463b-8e2b-aee8de61bfb4
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 17 July 2014
                : 11 March 2015
                Page count
                Figures: 5, Tables: 6, Pages: 22
                Funding
                The work was supported by the German Federal Ministry of Education and Research (BMBF, http://www.bmbf.de/) within the scope of the FUGATO QUALIPID project (FKZ 0313391C). PW was supported by the International Leibniz Graduate School on Functional Diversity in Farm Animals (ILGS DivA, http://www.leibniz-gemeinschaft.de/). KS is supported by ‘Biomedical Research Program’ funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation ( http://www.qf.org.qa/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article