Blog
About

192
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To evaluate transmission dynamics, we exposed 25 bird species to West Nile virus (WNV) by infectious mosquito bite. We monitored viremia titers, clinical outcome, WNV shedding (cloacal and oral), seroconversion, virus persistence in organs, and susceptibility to oral and contact transmission. Passeriform and charadriiform birds were more reservoir competent (a derivation of viremia data) than other species tested. The five most competent species were passerines: Blue Jay ( Cyanocitta cristata), Common Grackle ( Quiscalus quiscula), House Finch ( Carpodacus mexicanus), American Crow ( Corvus brachyrhynchos), and House Sparrow ( Passer domesticus). Death occurred in eight species. Cloacal shedding of WNV was observed in 17 of 24 species, and oral shedding in 12 of 14 species. We observed contact transmission among four species and oral in five species. Persistent WNV infections were found in tissues of 16 surviving birds. Our observations shed light on transmission ecology of WNV and will benefit surveillance and control programs.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States.

          In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The outbreak of West Nile virus infection in the New York City area in 1999.

            In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 95). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy in 14 percent. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (age-adjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vector Competence of California Mosquitoes for West Nile virus

              To identify the mosquito species competent for West Nile virus (WNV) transmission, we evaluated 10 California species that are known vectors of other arboviruses or major pests: Culex tarsalis, Cx. pipiens pipiens, Cx. p. quinquefasciatus, Cx. stigmatosoma, Cx. erythrothorax, Ochlerotatus dorsalis, Oc. melanimon, Oc. sierrensis, Aedes vexans, and Culiseta inornata. All 10 became infected and were able to transmit WNV at some level. Ochlerotatus, Culiseta, and Aedes were low to moderately efficient vectors. They feed primarily on mammals and could play a secondary role in transmission. Oc. sierrensis, a major pest species, and Cx. p. quinquefasciatus from southern California were the least efficient laboratory vectors. Cx. tarsalis, Cx. stigmatosoma, Cx. erythrothorax, and other populations of Cx. pipiens complex were the most efficient laboratory vectors. Culex species are likely to play the primary role in the enzootic maintenance and transmission of WNV in California.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                March 2003
                : 9
                : 3
                : 311-322
                Affiliations
                [* ]Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
                []Colorado State University, Fort Collins, Colorado, USA
                []Office of the Surgeon General, United States Air Force, Bolling Air Force Base, Washington, D.C., USA
                Author notes
                Address for correspondence: Nicholas Komar, Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins CO 80522, USA; fax: 970-221-6476; e-mail: nck6@ 123456cdc.gov
                Article
                02-0628
                10.3201/eid0903.020628
                2958552
                12643825
                Categories
                Research

                Comments

                Comment on this article