3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt- D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH 2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund’s adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and validation of a genetic algorithm for flexible docking.

            Prediction of small molecule binding modes to macromolecules of known three-dimensional structure is a problem of paramount importance in rational drug design (the "docking" problem). We report the development and validation of the program GOLD (Genetic Optimisation for Ligand Docking). GOLD is an automated ligand docking program that uses a genetic algorithm to explore the full range of ligand conformational flexibility with partial flexibility of the protein, and satisfies the fundamental requirement that the ligand must displace loosely bound water on binding. Numerous enhancements and modifications have been applied to the original technique resulting in a substantial increase in the reliability and the applicability of the algorithm. The advanced algorithm has been tested on a dataset of 100 complexes extracted from the Brookhaven Protein DataBank. When used to dock the ligand back into the binding site, GOLD achieved a 71% success rate in identifying the experimental binding mode.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of the μ-opioid receptor bound to a morphinan antagonist

              Summary Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many of their undesirable side effects (sedation, apnea and dependence) by binding to and activating the G-protein-coupled μ-opioid receptor (μOR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the μOR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most GPCRs published to date, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the μOR crystallizes as a two-fold symmetric dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                28 May 2021
                June 2021
                : 26
                : 11
                : 3267
                Affiliations
                [1 ]Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; maria.dumitrascuta@ 123456student.uibk.ac.at (M.D.); olga.trovato@ 123456uibk.ac.at (O.T.)
                [2 ]Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; m.bermudez@ 123456fu-berlin.de (M.B.); gerhard.wolber@ 123456fu-berlin.de (G.W.)
                [3 ]Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; jolien.de.neve@ 123456vub.be (J.D.N.); steven.ballet@ 123456vub.be (S.B.)
                Author notes
                [* ]Correspondence: mariana.spetea@ 123456uibk.ac.at ; Tel.: +43-512-50758277
                Author information
                https://orcid.org/0000-0002-7421-3282
                https://orcid.org/0000-0002-5344-0048
                https://orcid.org/0000-0002-2379-5358
                Article
                molecules-26-03267
                10.3390/molecules26113267
                8198056
                34071603
                bee638c3-9af8-4446-8eab-b84cdac678cf
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 20 April 2021
                : 26 May 2021
                Categories
                Article

                µ-opioid receptor,nociceptin receptor,multitarget ligands,inflammatory pain,side effects,reward,molecular docking

                Comments

                Comment on this article