41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

      The American Journal of Clinical Nutrition
      Animals, Diet, standards, Food Analysis, Food Handling, Fruit, Health, Humans, Meat, Nitrates, adverse effects, analysis, Nitric Oxide, metabolism, Nitrites, Vegetables

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of fruit and vegetable intake on risk for coronary heart disease.

          Many constituents of fruits and vegetables may reduce the risk for coronary heart disease, but data on the relationship between fruit and vegetable consumption and risk for coronary heart disease are sparse. To evaluate the association of fruit and vegetable consumption with risk for coronary heart disease. Prospective cohort study. The Nurses' Health Study and the Health Professionals' Follow-Up Study. 84 251 women 34 to 59 years of age who were followed for 14 years and 42 148 men 40 to 75 years who were followed for 8 years. All were free of diagnosed cardiovascular disease, cancer, and diabetes at baseline. The main outcome measure was incidence of nonfatal myocardial infarction or fatal coronary heart disease (1127 cases in women and 1063 cases in men). Diet was assessed by using food-frequency questionnaires. After adjustment for standard cardiovascular risk factors, persons in the highest quintile of fruit and vegetable intake had a relative risk for coronary heart disease of 0.80 (95% CI, 0.69 to 0.93) compared with those in the lowest quintile of intake. Each 1-serving/d increase in intake of fruits or vegetables was associated with a 4% lower risk for coronary heart disease (relative risk, 0.96 [CI, 0.94 to 0.99]; P = 0.01, test for trend). Green leafy vegetables (relative risk with 1-serving/d increase, 0.77 [CI, 0.64 to 0.93]), and vitamin C-rich fruits and vegetables (relative risk with 1-serving/d increase, 0.94 [CI, 0.88 to 0.99]) contributed most to the apparent protective effect of total fruit and vegetable intake. Consumption of fruits and vegetables, particularly green leafy vegetables and vitamin C-rich fruits and vegetables, appears to have a protective effect against coronary heart disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fruit and vegetable intake in relation to risk of ischemic stroke.

            Few studies have evaluated the relationship between fruit and vegetable intake and cardiovascular disease. To examine the associations between fruit and vegetable intake and ischemic stroke. Prospective cohort studies, including 75 596 women aged 34 to 59 years in the Nurses' Health Study with 14 years of follow-up (1980-1994), and 38683 men aged 40 to 75 years in the Health Professionals' Follow-up Study with 8 years of follow-up (1986-1994). All individuals were free of cardiovascular disease, cancer, and diabetes at baseline. Incidence of ischemic stroke by quintile of fruit and vegetable intake. A total of 366 women and 204 men had an ischemic stroke. After controlling for standard cardiovascular risk factors, persons in the highest quintile of fruit and vegetable intake (median of 5.1 servings per day among men and 5.8 servings per day among women) had a relative risk (RR) of 0.69 (95% confidence interval [CI], 0.52-0.92) compared with those in the lowest quintile. An increment of 1 serving per day of fruits or vegetables was associated with a 6% lower risk of ischemic stroke (RR, 0.94; 95 % CI, 0.90-0.99; P =.01, test for trend). Cruciferous vegetables (RR, 0.68 for an increment of 1 serving per day; 95% CI, 0.49-0.94), green leafy vegetables (RR, 0.79; 95% CI, 0.62-0.99), citrus fruit including juice (RR, 0.81; 95% CI, 0.68-0.96), and citrus fruit juice (RR, 0.75; 95% CI, 0.61-0.93) contributed most to the apparent protective effect of total fruits and vegetables. Legumes or potatoes were not associated with lower ischemic stroke risk. The multivariate pooled RR for total stroke was 0.96 (95% CI, 0.93-1.00) for each increment of 2 servings per day. These data support a protective relationship between consumption of fruit and vegetables-particularly cruciferous and green leafy vegetables and citrus fruit and juice-and ischemic stroke risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition.

              Current evidence suggests that high red meat intake is associated with increased colorectal cancer risk. High fish intake may be associated with a decreased risk, but the existing evidence is less convincing. We prospectively followed 478 040 men and women from 10 European countries who were free of cancer at enrollment between 1992 and 1998. Information on diet and lifestyle was collected at baseline. After a mean follow-up of 4.8 years, 1329 incident colorectal cancers were documented. We examined the relationship between intakes of red and processed meat, poultry, and fish and colorectal cancer risk using a proportional hazards model adjusted for age, sex, energy (nonfat and fat sources), height, weight, work-related physical activity, smoking status, dietary fiber and folate, and alcohol consumption, stratified by center. A calibration substudy based on 36 994 subjects was used to correct hazard ratios (HRs) and 95% confidence intervals (CIs) for diet measurement errors. All statistical tests were two-sided. Colorectal cancer risk was positively associated with intake of red and processed meat (highest [>160 g/day] versus lowest [ 80 g/day versus <10 g/day, HR = 0.69, 95 % CI = 0.54 to 0.88; Ptrend<.001), but was not related to poultry intake. Correcting for measurement error strengthened the associations between colorectal cancer and red and processed meat intake (per 100-g increase HR = 1.25, 95% CI =1.09 to 1.41, Ptrend = .001 and HR = 1.55, 95% CI = 1.19 to 2.02, Ptrend = .001 before and after calibration, respectively) and for fish (per 100 g increase HR = 0.70, 95% CI = 0.57 to 0.87, Ptrend<.001 and HR = 0.46, 95% CI = 0.27 to 0.77, Ptrend = .003; before and after correction, respectively). In this study population, the absolute risk of development of colorectal cancer within 10 years for a study subject aged 50 years was 1.71% for the highest category of red and processed meat intake and 1.28% for the lowest category of intake and was 1.86% for subjects in the lowest category of fish intake and 1.28% for subjects in the highest category of fish intake. Our data confirm that colorectal cancer risk is positively associated with high consumption of red and processed meat and support an inverse association with fish intake.
                Bookmark

                Author and article information

                Journal
                19439460
                10.3945/ajcn.2008.27131

                Chemistry
                Animals,Diet,standards,Food Analysis,Food Handling,Fruit,Health,Humans,Meat,Nitrates,adverse effects,analysis,Nitric Oxide,metabolism,Nitrites,Vegetables

                Comments

                Comment on this article