14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urban Stormwater Runoff: A New Class of Environmental Flow Problem

      research-article
      1 , * , 1 , 2 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Peak water limits to freshwater withdrawal and use.

          Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of "peak oil"--a peaking and then decline in oil production--has long been predicted and debated. We present here a detailed assessment and definition of three concepts of "peak water": peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak "ecological" water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from Australia and the United States.

            In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applying integrated urban water management concepts: a review of Australian experience.

              This article explores recent Australian experiences in the application of the concept of integrated urban water management (IUWM) to land development sites through the review of 15 case studies. It discusses IUWM's emergence and comments on the success or otherwise of Australian experience in its application. The understanding of IUWM is maturing within the Australian water industry, an occurrence that has been facilitated by demonstration sites such as those reviewed. Successes include the translation of IUWM concepts into well-functioning operational urban developments, significant reductions in the impact of the urban developments on the total water cycle, and the increasing acceptance of the concept within the water and land development industries. However, there is still room for greater integration of the water supply, stormwater, and wastewater components of the urban water cycle, improved dissemination of knowledge, enhancement of skills in both public and private organisations, and monitoring the performance of systems and technologies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 September 2012
                : 7
                : 9
                : e45814
                Affiliations
                [1 ]Department of Resource Management and Geography, The University of Melbourne, Parkville, Victoria, Australia
                [2 ]Department of Civil Engineering and Monash Water for Liveability, Monash University, Victoria, Australia
                Argonne National Laboratory, United States of America
                Author notes

                Competing Interests: The work reported in this manuscript was partly funded by Melbourne Water. Melbourne Water is a corporation owned by the Government of Victoria, with statutory responsibilities for the management of rivers and other waterways of the Melbourne region. They fund “public good” research to further the environmental sustainability of their operations. In the area of sustainable waterway management, both TDF and CJW have, over the last 5 years, undertaking consultancies, sat on advisory committees and provided other unpaid advice to Melbourne Water. Part of the University of Melbourne research fellow position held by CJW is funded by a Melbourne Water research grant. This relationship and funding source does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials. The authors have no other competing interests.

                Conceived and designed the experiments: CJW TDF. Performed the experiments: CJW TDF MJB. Analyzed the data: CJW TDF MJB. Contributed reagents/materials/analysis tools: CJW TDF MJB. Wrote the paper: CJW TDF MJB.

                Article
                PONE-D-12-08006
                10.1371/journal.pone.0045814
                3446928
                23029257
                bef92671-ea9a-4df8-b28a-e78c262fa71a
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 March 2012
                : 22 August 2012
                Page count
                Pages: 10
                Funding
                This work was supported by Melbourne Water ( www.melbournewater.com.au) and the Australian Research Council's ( www.arc.gov.au) Linkage Projects scheme (project number LP0883610) and TDF is supported by the Council's Future Fellowship scheme. The views expressed herein are those of the authors and not necessarily those of the funding bodies. The funders had no role in study design, data analysis, decision to publish, or preparation of the manuscript. Other than the acknowledged hydrographic data used in the paper that were collected by Melbourne Water, the funders had no role in data collection.
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Freshwater Environments
                Environmental Protection
                Freshwater Ecology
                Spatial and Landscape Ecology
                Urban Ecology
                Earth Sciences
                Environmental Sciences
                Environmental Engineering
                Water Management
                Marine and Aquatic Sciences
                Hydrology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article