95
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular microRNAs as messengers in the central and peripheral nervous system

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.

          Related collections

          Most cited references 98

          • Record: found
          • Abstract: found
          • Article: not found

          A brain-specific microRNA regulates dendritic spine development.

          MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

            Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular internalization of exosomes occurs through phagocytosis.

              Exosomes play important roles in many physiological and pathological processes. However, the exosome-cell interaction mode and the intracellular trafficking pathway of exosomes in their recipient cells remain unclear. Here, we report that exosomes derived from K562 or MT4 cells are internalized more efficiently by phagocytes than by non-phagocytic cells. Most exosomes were observed attached to the plasma membrane of non-phagocytic cells, while in phagocytic cells these exosomes were found to enter via phagocytosis. Specifically, they moved to phagosomes together with phagocytic polystyrene carboxylate-modified latex beads (biospheres) and were further sorted into phagolysosomes. Moreover, exosome internalization was dependent on the actin cytoskeleton and phosphatidylinositol 3-kinase, and could be inhibited by the knockdown of dynamin2 or overexpression of a dominant-negative form of dynamin2. Further, antibody pretreatment assays demonstrated that tim4 but not tim1 was involved in exosomes uptake. We also found that exosomes did not enter the internalization pathway involving caveolae, macropinocytosis and clathrin-coated vesicles. Our observation that the cellular uptake of exosomes occurs through phagocytosis has important implications for exosome-cell interactions and the exosome intracellular trafficking pathway.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuronal Signal
                Neuronal Signal
                ns
                Neuronal Signaling
                Portland Press Ltd.
                2059-6553
                December 2017
                02 November 2017
                : 1
                : 4
                Affiliations
                School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
                Author notes
                Correspondence: Hannah Scott ( ScottH5@ 123456cardiff.ac.uk )
                Article
                NS20170112
                10.1042/NS20170112
                7373247
                32714581
                © 2017 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                Page count
                Pages: 16
                Product
                Categories
                Signaling
                RNA
                Gene Expression & Regulation
                Epigenetics
                Neuroscience
                Review Articles

                Comments

                Comment on this article