26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BET bromodomain inhibition suppresses T H17-mediated pathology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The BET family of chromatin adaptors promotes T H17 differentiation, and inhibition of BET proteins protects against autoimmune diseases, including collagen-induced arthritis and EAE, in mice.

          Abstract

          Interleukin (IL) 17–producing T helper (T H17) cells have been selected through evolution for their ability to control fungal and bacterial infections. It is also firmly established that their aberrant generation and activation results in autoimmune conditions. Using a characterized potent and selective small molecule inhibitor, we show that the bromodomain and extra-terminal domain (BET) family of chromatin adaptors plays fundamental and selective roles in human and murine T H17 differentiation from naive CD4 + T cells, as well as in the activation of previously differentiated T H17 cells. We provide evidence that BET controls T H17 differentiation in a bromodomain-dependent manner through a mechanism that includes the direct regulation of multiple effector T H17-associated cytokines, including IL17, IL21, and GMCSF. We also demonstrate that BET family members Brd2 and Brd4 associate with the Il17 locus in T H17 cells, and that this association requires bromodomains. We recapitulate the critical role of BET bromodomains in T H17 differentiation in vivo and show that therapeutic dosing of the BET inhibitor is efficacious in mouse models of autoimmunity. Our results identify the BET family of proteins as a fundamental link between chromatin signaling and T H17 biology, and support the notion of BET inhibition as a point of therapeutic intervention in autoimmune conditions.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

          T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical regulation of early Th17 cell differentiation by interleukin-1 signaling.

            T helper (Th) 17 cells have been recently discovered in both mouse and human. Here we show that interleukin-1 (IL-1) signaling on T cells is critically required for the early programming of Th17 cell lineage and Th17 cell-mediated autoimmunity. IL-1 receptor1 expression in T cells, which was induced by IL-6, was necessary for the induction of experimental autoimmune encephalomyelitis and for early Th17 cell differentiation in vivo. Moreover, IL-1 signaling in T cells was required in dendritic cell-mediated Th17 cell differentiation from naive or regulatory precursors and IL-1 synergized with IL-6 and IL-23 to regulate Th17 cell differentiation and maintain cytokine expression in effector Th17 cells. Importantly, IL-1 regulated the expression of the transcription factors IRF4 and RORgammat during Th17 cell differentiation; overexpression of these two factors resulted in IL-1-independent Th17 cell polarization. Our data thus indicate a critical role of IL-1 in Th17 cell differentiation and this pathway may serve as a unique target for Th17 cell-mediated immunopathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4.

              Interferon-regulatory factor 4 (IRF4) is essential for the development of T helper type 2 cells. Here we show that IRF4 is also critical for the generation of interleukin 17-producing T helper cells (T(H)-17 cells), which are associated with experimental autoimmune encephalomyelitis. IRF4-deficient (Irf4(-/-)) mice did not develop experimental autoimmune encephalomyelitis, and T helper cells from such mice failed to differentiate into T(H)-17 cells. Transfer of wild-type T helper cells into Irf4(-/-) mice rendered the mice susceptible to experimental autoimmune encephalomyelitis. Irf4(-/-) T helper cells had less expression of RORgammat and more expression of Foxp3, transcription factors important for the differentiation of T(H)-17 and regulatory T cells, respectively. Altered regulation of both transcription factors contributed to the phenotype of Irf4(-/-) T helper cells. Our data position IRF4 at the center of T helper cell development, influencing not only T helper type 2 but also T(H)-17 differentiation.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 October 2013
                : 210
                : 11
                : 2181-2190
                Affiliations
                Constellation Pharmaceuticals, Inc., Cambridge, MA
                Author notes
                CORRESPONDENCE Jose M. Lora: jose.lora@ 123456constellationpharma.com
                Article
                20130376
                10.1084/jem.20130376
                3804955
                24101376
                bf083dbe-1141-4475-bae9-9428e5118405
                © 2013 Mele et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 19 February 2013
                : 27 August 2013
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article