+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      The Synergistic Interaction of Interferon Types I and II Leads to Marked Reduction in Severe Acute Respiratory Syndrome-Associated Coronavirus Replication and Increase in the Expression of mRNAs for Interferon-Induced Proteins


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Interferon (IFN)-α, -β and -γ have been shown to be only marginally effective against severe acute respiratory syndrome coronavirus (SARS-CoV) replication in Vero cell lines. We investigated the combination of type I IFNs (IFN-α or -β) and IFN-γ for antiviral activity and found that such combinations synergistically inhibited SARS-CoV replication in Vero cells, using yield reduction assay and the isobologram and combination index methods of Chou and Talalay for evaluation. The highly synergistic anti-SARS-CoV action of type I IFNs and IFN-γ parallels the marked increase in 2′-5′-oligoadenylate synthetase and p56 mRNAs following exposure in Vero cells to either IFN-α or -β and IFN-γ compared with the transcriptional levels obtained after stimulation with either IFN alone. These results demonstrate that SARS-CoV, although only moderately sensitive to the antiviral action of the individual types of IFN, is highly sensitive to a combination of type I and II IFNs, which suggests that such combinations may have potential in the treatment of SARS-CoV infections.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            • Record: found
            • Abstract: found
            • Article: not found

            Interferon-β 1a and SARS Coronavirus Replication

            A global outbreak of severe acute respiratory syndrome (SARS) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and the substantial illness and death it caused have made it a critical public health issue. Because no effective treatments are available, an intensive effort is under way to identify and test promising antiviral drugs. Here, we report that recombinant human interferon (IFN)-β 1a potently inhibits SARS coronavirus replication in vitro.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coronaviridae and SARS-associated Coronavirus Strain HSR1

              During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features.

                Author and article information

                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.com )
                February 2007
                22 December 2006
                : 50
                : 2
                : 156-160
                [1] aDepartment of Experimental Medicine, Virology Section, University La Sapienza
                [2] bS. Pertini Hospital, Rome
                [3] cUniversity Campus Biomedico, Rome
                [4] dDepartment of Pharmacology, Menarini Ricerche S.p.A., Pomezia
                [5] eMicrobiology and Virology Laboratory, San Raffaele Scientific Institute and School of Medicine, Vita-Salute University, Milan, Italy
                Author notes
                * Guido Antonelli, Department of Experimental Medicine-Virology Section, University La Sapienza, Viale di Porta Tiburtina 28, IT-00185 Rome (Italy), Tel. +39 06 4474 122, Fax +39 06 4474 1236, E-Mail guido.antonelli@ 123456uniroma1.it
                Copyright © 2007 by S. Karger AG, Basel

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                : 4 May 2006
                : 21 August 2006
                : 2007
                Page count
                Figures: 2, Tables: 1, References: 23, Pages: 5
                Short Communication

                interferon,severe acute respiratory syndrome coronavirus,2′-5′-oligoadenylate synthetase,p56


                Comment on this article