38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The brain’s best friend: microglial neurotoxicity revisited

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One long standing aspect of microglia biology was never questioned; their involvement in brain disease. Based on morphological changes (retracted processes and amoeboid shape) that inevitably occur in these cells in case of damage in the central nervous system, microglia in the diseased brain were called “activated.” Because “activated” microglia were always found in direct neighborhood to dead or dying neuron, and since it is known now for more than 20 years that cultured microglia release numerous factors that are able to kill neurons, microglia “activation” was often seen as a neurotoxic process. From an evolutionary point of view, however, it is difficult to understand why an important, mostly post-mitotic and highly vulnerable organ like the brain would host numerous potential killers. This review is aimed to critically reconsider the term microglia neurotoxicity and to discuss experimental problems around microglia biology, that often have led to the conclusion that microglia are neurotoxic cells.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Local self-renewal can sustain CNS microglia maintenance and function throughout adult life.

          Microgliosis is a common response to multiple types of damage in the CNS. However, the origin of the cells involved in this process is still controversial and the relative importance of local expansion versus recruitment of microglia progenitors from the bloodstream is unclear. Here, we investigated the origin of microglia using chimeric animals obtained by parabiosis. We found no evidence of microglia progenitor recruitment from the circulation in denervation or CNS neurodegenerative disease, suggesting that maintenance and local expansion of microglia are solely dependent on the self-renewal of CNS resident cells in these models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of microglial neurotoxicity by the fractalkine receptor.

            Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1-/- mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

              In multiple sclerosis and the experimental autoimmune encephalitis (EAE) mouse model, two pools of morphologically indistinguishable phagocytic cells, microglia and inflammatory macrophages, accrue from proliferating resident precursors and recruitment of blood-borne progenitors, respectively. Whether these cell types are functionally equivalent is hotly debated, but is challenging to address experimentally. Using a combination of parabiosis and myeloablation to replace circulating progenitors without affecting CNS-resident microglia, we found a strong correlation between monocyte infiltration and progression to the paralytic stage of EAE. Inhibition of chemokine receptor-dependent recruitment of monocytes to the CNS blocked EAE progression, suggesting that these infiltrating cells are essential for pathogenesis. Finally, we found that, although microglia can enter the cell cycle and return to quiescence following remission, recruited monocytes vanish, and therefore do not ultimately contribute to the resident microglial pool. In conclusion, we identified two distinct subsets of myelomonocytic cells with distinct roles in neuroinflammation and disease progression.
                Bookmark

                Author and article information

                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                16 May 2013
                2013
                : 7
                : 71
                Affiliations
                [1] 1Department of Psychiatry and Psychotherapy, University Hospital Freiburg Freiburg, Germany
                [2] 2Department of Neuroscience, University Medical Center Groningen Groningen, Netherlands
                Author notes

                Edited by: Marie-Eve Tremblay, Université Laval, Canada

                Reviewed by: Alain Bessis, Institut de Biologie of the Ecole Nomale Superieure, France; Erik Boddeke, University Medical Centre Groningen, Netherlands

                *Correspondence: Knut Biber, Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany. e-mail: knut.biber@ 123456uniklinik-freiburg.de
                Article
                10.3389/fncel.2013.00071
                3655268
                23734099
                bf243759-f892-4aa8-ad13-98eac84c3b23
                Copyright © Hellwig, Heinrich and Biber.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 23 January 2013
                : 26 April 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 165, Pages: 11, Words: 0
                Categories
                Neuroscience
                Review Article

                Neurosciences
                microglia,neuroprotection,mouse models,innate immunity,cx3cr1,microglia depletion
                Neurosciences
                microglia, neuroprotection, mouse models, innate immunity, cx3cr1, microglia depletion

                Comments

                Comment on this article