23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Progress in automating patch clamp cellular physiology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.

          1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pain regulation by non-neuronal cells and inflammation

            Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green fluorescent protein as a marker for gene expression.

              A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.
                Bookmark

                Author and article information

                Journal
                Brain Neurosci Adv
                Brain Neurosci Adv
                BNA
                spbna
                Brain and Neuroscience Advances
                SAGE Publications (Sage UK: London, England )
                2398-2128
                17 May 2018
                Jan-Dec 2018
                : 2
                : 2398212818776561
                Affiliations
                [1-2398212818776561]Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
                Author notes
                [*]Simon R. Schultz, Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, UK. Email: s.schultz@ 123456imperial.ac.uk
                Author information
                https://orcid.org/0000-0002-6794-5813
                Article
                10.1177_2398212818776561
                10.1177/2398212818776561
                7058203
                bf27f336-091a-4f2a-a5f9-40936aee4c2b
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution 4.0 License ( http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 26 February 2018
                : 19 April 2018
                Funding
                Funded by: Office of the Royal Society, FundRef https://doi.org/10.13039/501100008134;
                Award ID: TA\R1\170047
                Funded by: Biotechnology and Biological Sciences Research Council, FundRef https://doi.org/10.13039/501100000268;
                Award ID: BB/K001817/1
                Categories
                Review Article
                Custom metadata
                January-December 2018

                automated electrophysiology,neuroscience,patch clamp,robotic automation

                Comments

                Comment on this article