13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABA B], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon.

          Results

          We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s) when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s), beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals.

          Conclusions

          Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase.

          Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant.

            We have isolated and mapped an X-linked recessive mutation in Drosophila that blocks associative learning, and have partially characterized it biochemically. The mutation affects adenylate cyclase activity. Cyclase activity from mutant flies differed from the wild-type enzyme in that it was not stimulated by calcium or calmodulin. Mutant cyclase activity did respond to guanyl nucleotides, fluoride, and monoamines, which suggests that the defect is neither in the hormone receptor nor in either known GTP-binding regulatory protein. The mutation possibly affects the catalytic subunit directly. We postulate that there is at least one other type of adenylate cyclase activity that is unaffected by the mutation and insensitive to calcium/calmodulin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase.

              Four putative adenylyl cyclase genes from Drosophila melanogaster were identified by virtue of their extensive sequence homology with mammalian cyclases. One corresponds to the learning and memory gene rutabaga and is most similar to the mammalian brain Ca2+/calmodulin (CaM)-responsive cyclase. In a mammalian expression system, rutabaga cyclase activity was stimulated approximately 5-fold by the presence of Ca2+/CaM. A point mutation, identified at this locus in rut1 mutant flies, resulted in loss of detectable adenylyl cyclase activity. New P element insertion-induced rutabaga mutations mapped to within 200 nucleotides of the 5' end of the rutabaga cDNA. These data confirm the identity of the rutabaga locus as the structural gene for the Ca2+/CaM-responsive adenylyl cyclase and show that the inactivation of this cyclase leads to a learning and memory defect.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central (London )
                1471-2121
                2004
                9 June 2004
                : 5
                : 25
                Affiliations
                [1 ]CNRS, University of Burgundy, Centre Européen des Sciences du Goût 15, rue Hugues Picardet DIJON 21000, France
                Article
                1471-2121-5-25
                10.1186/1471-2121-5-25
                434497
                15189569
                bf2bc719-b733-41f1-a5f8-7b0afa88559d
                Copyright © 2004 Robichon et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 29 July 2003
                : 9 June 2004
                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article