8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 ( PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient (ApoE −/−) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Clinical practice. Abdominal aortic aneurysms.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms.

            Abdominal aortic aneurysms represent a life-threatening condition characterized by chronic inflammation, destructive remodeling of the extracellular matrix, and increased local expression of matrix metalloproteinases (MMPs). Both 92-kD gelatinase (MMP-9) and macrophage elastase (MMP-12) have been implicated in this disease, but it is not known if either is necessary in aneurysmal degeneration. We show here that transient elastase perfusion of the mouse aorta results in delayed aneurysm development that is temporally associated with transmural mononuclear inflammation, increased local production of several elastolytic MMPs, and progressive destruction of the elastic lamellae. Elastase-induced aneurysmal degeneration was suppressed by treatment with a nonselective MMP inhibitor (doxycycline) and by targeted gene disruption of MMP-9, but not by isolated deficiency of MMP-12. Bone marrow transplantation from wild-type mice prevented the aneurysm-resistant phenotype in MMP-9-deficient animals, and wild-type mice acquired aneurysm resistance after transplantation from MMP-9-deficient donors. These results demonstrate that inflammatory cell expression of MMP-9 plays a critical role in an experimental model of aortic aneurysm disease, suggesting that therapeutic strategies targeting MMP-9 may limit the growth of small abdominal aortic aneurysms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development.

              MicroRNAs (miRs) regulate gene expression at the posttranscriptional level and play crucial roles in vascular integrity. As such, they may have a role in modifying abdominal aortic aneurysm (AAA) expansion, the pathophysiological mechanisms of which remain incompletely explored. Here, we investigate the role of miRs in 2 murine models of experimental AAA: the porcine pancreatic elastase (PPE) infusion model in C57BL/6 mice and the AngII infusion model in Apoe-/- mice. AAA development was accompanied by decreased aortic expression of miR-29b, along with increased expression of known miR-29b targets, Col1a1, Col3a1, Col5a1, and Eln, in both models. In vivo administration of locked nucleic acid anti-miR-29b greatly increased collagen expression, leading to an early fibrotic response in the abdominal aortic wall and resulting in a significant reduction in AAA progression over time in both models. In contrast, overexpression of miR-29b using a lentiviral vector led to augmented AAA expansion and significant increase of aortic rupture rate. Cell culture studies identified aortic fibroblasts as the likely vascular cell type mediating the profibrotic effects of miR-29b modulation. A similar pattern of reduced miR-29b expression and increased target gene expression was observed in human AAA tissue samples compared with that in organ donor controls. These data suggest that therapeutic manipulation of miR-29b and its target genes holds promise for limiting AAA disease progression and protecting from rupture.
                Bookmark

                Author and article information

                Journal
                Mol Cells
                Mol. Cells
                ksmcb
                Molecules and Cells
                Korean Society for Molecular and Cellular Biology
                1016-8478
                0219-1032
                31 March 2019
                01 February 2019
                : 42
                : 3
                : 218-227
                Affiliations
                [1 ]Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan, China
                [2 ]Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China
                [3 ]Department of Vascular and Endovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China
                Author notes
                [* ]Correspondence: gangqiao2004@ 123456126.com
                Article
                molce-42-3-218
                10.14348/molcells.2018.0162
                6449717
                30726659
                bf386d6a-5809-4ae8-a22f-633ee7a3e978
                © The Korean Society for Molecular and Cellular Biology. All rights reserved.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

                History
                : 11 April 2018
                : 08 October 2018
                : 15 October 2018
                Categories
                Article

                abdominal aortic aneurysm,apoptosis,extracellular matrix,lncrna pvt1,vascular smooth muscle cell

                Comments

                Comment on this article