3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Model with GA Evolving FWNN for Effluent Quality and Biogas Production Forecast in a Full-Scale Anaerobic Wastewater Treatment Process

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anaerobic treatment process is a complicated multivariable system that is nonlinear and time varying. Moreover, biogas production rates are an important indicator for reflecting operational performance of the anaerobic treatment system. In this work, a novel model fuzzy wavelet neural network based on the genetic algorithm (GA-FWNN) that combines the advantages of the genetic algorithm, fuzzy logic, neural network, and wavelet transform was established for prediction of effluent quality and biogas production rates in a full-scale anaerobic wastewater treatment process. Moreover, the dataset was preprocessed via a self-adapted fuzzy c-means clustering before training the network and a hybrid algorithm for acquiring the optimal parameters of the multiscale GA-FWNN for improving the network precision. The analysis results indicate that the FWNN with the optimal algorithm had a high speed of convergence and good quality of prediction, and the FWNN model was more advantageous than the traditional intelligent coupling models (NN, WNN, and FNN) in prediction accuracy and robustness. The determination coefficients R 2 of the FWNN models for predicting both the effluent quality and biogas production rates were over 0.95. The proposed model can be used for analyzing both biogas (methane) production rates and effluent quality over the operational time period, which plays an important role in saving energy and eliminating pollutant discharge in the wastewater treatment system.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering domain and directions for future research

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Occurrence, distribution and seasonal variation of five neonicotinoids insecticides in surface water and sediment of the Pearl Rivers, South China

            Occurrence and distribution of five neonicotinoids (NEOs) in surface water and sediment were studied in the Pearl Rivers, including three trunk streams, Dongjiang, Beijiang, Xijiang River (DR, BR and XR), South China. At least one neonicotinoid was detected in surface water and sediment of the Pearl Rivers, with imidacloprid (IMI) and thiamethoxam (THM) being the frequently detected NEOs. Total amount of NEOs (∑5neonics) in surface water and sediment ranged from 24.0 to 322 ng/L, and from 0.11 to 11.6 ng/g dw, respectively. Moreover, the order of contamination level of NEOs in the Pearl Rivers was as follows: XR > DR > BR for surface water, and BR > DR > XR for sediment. Local agricultural activities and effluents of wastewater treatment plants (WWTPs) could be major sources of NEOs in the Pearl Rivers. Solubilization and dilution of NEOs between surface water and sediment during different seasons (spring and summer) could be attributed to rainfall intensities or climate of the Pearl River Delta. An ecological risk assessment of the exposure to current environmental concentration of imidacloprid and ∑5NEOs suggests a threat to sensitive non-target invertebrates, including aquatic invertebrates. Results would provide a better understanding of NEOs contamination in the Pearl Rivers, as well as being a reliable dataset for decision-making in contamination control and environmental protection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China

              Little information is available about the occurrence of neonicotinoid insecticides in surface water and sediment of the metropolitan regions around the rivers in China. Here we investigate the residual level of neonicotinoids in the Guangzhou section of the Pearl River. At least one or two neonicotinoids was detected in each surface water and sediment, and the total amount of neonicotinoids (∑5neonics) in surface water ranged from 92.6 to 321 ng/L with a geometric mean (GM) of 174 ng/L. Imidacloprid, thiamethoxam and acetamiprid were three frequently detected neonicotinoids (100%) from surface water. As for the sediment, total concentration was varied between 0.40 and 2.59 ng/g dw with a GM of 1.12 ng/g dw, and acetamiprid and thiacloprid were the common sediment neonicotinoids. Western and Front river-route of the Guangzhou section of the Pearl River suffered a higher neonicotinoids contamination than the Rear river-route, resulting from more effluents of WWTPs receiving, and intensive commercial and human activities. Level of residual neonicotinoids in surface water was significantly correlated with the water quality (p < 0.01), especially items of pH, DO and ORP, and nitrogen and phosphorus contaminants. Compared with reports about residual neonicotinoids in water and sediment previously, the metropolitan regions of the Guangzhou could be confronted with a moderate contamination and showed serious ecological threats (even heavier than the Pearl Rivers). Our results will provide valuable data for understanding of neonicotinoids contamination in the Pearl River Delta and be helpful for further assessing environmental risk of neonicotinoids.
                Bookmark

                Author and article information

                Journal
                Complexity
                Complexity
                Hindawi Limited
                1076-2787
                1099-0526
                November 26 2019
                November 26 2019
                : 2019
                : 1-13
                Affiliations
                [1 ]SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
                [2 ]South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou 510650, China
                [3 ]Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
                [4 ]College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
                [5 ]Zhongshan Environmental Monitoring Station, Zhongshan 528400, China
                Article
                10.1155/2019/2468189
                bf563ef7-0ec0-4ac9-8c53-31868a68a14b
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article