53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The connection between lymphangiogenic signalling and prostaglandin biology: A missing link in the metastatic pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Substantial evidence supports important independent roles for lymphangiogenic growth factor signaling and prostaglandins in the metastatic spread of cancer. The significance of the lymphangiogenic growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, is well established in animal models of metastasis, and a strong correlation exits between an increase in expression of VEGF-C and VEGF-D, and metastatic spread in various solid human cancers. Similarly, key enzymes that control the production of prostaglandins, cyclooxygenases (COX-1 and COX-2, prototypic targets of Non-steroidal anti-inflammatory drugs (NSAIDs)), are frequently over-expressed or de-regulated in the progression of cancer. Recent data have suggested an intersection of lymphangiogenic growth factor signaling and the prostaglandin pathways in the control of metastatic spread via the lymphatic vasculature. Furthermore, this correlates with current clinical data showing that some NSAIDs enhance the survival of cancer patients through reducing metastasis. Here, we discuss the potential biochemical and cellular basis for such anti-cancer effects of NSAIDs through the prostaglandin and VEGF signaling pathways.

          Related collections

          Most cited references 116

          • Record: found
          • Abstract: found
          • Article: not found

          Microenvironmental regulation of metastasis.

          Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes expressed in human tumor endothelium.

            To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression.

              Two cyclooxygenase isozymes, COX-1 and -2, are known to catalyze the rate-limiting step of prostaglandin synthesis and are the targets of nonsteroidal antiinflammatory drugs. Here we describe a third distinct COX isozyme, COX-3, as well as two smaller COX-1-derived proteins (partial COX-1 or PCOX-1 proteins). COX-3 and one of the PCOX-1 proteins (PCOX-1a) are made from the COX-1 gene but retain intron 1 in their mRNAs. PCOX-1 proteins additionally contain an in-frame deletion of exons 5-8 of the COX-1 mRNA. COX-3 and PCOX mRNAs are expressed in canine cerebral cortex and in lesser amounts in other tissues analyzed. In human, COX-3 mRNA is expressed as an approximately 5.2-kb transcript and is most abundant in cerebral cortex and heart. Intron 1 is conserved in length and in sequence in mammalian COX-1 genes. This intron contains an ORF that introduces an insertion of 30-34 aa, depending on the mammalian species, into the hydrophobic signal peptide that directs COX-1 into the lumen of the endoplasmic reticulum and nuclear envelope. COX-3 and PCOX-1a are expressed efficiently in insect cells as membrane-bound proteins. The signal peptide is not cleaved from either protein and both proteins are glycosylated. COX-3, but not PCOX-1a, possesses glycosylation-dependent cyclooxygenase activity. Comparison of canine COX-3 activity with murine COX-1 and -2 demonstrates that this enzyme is selectively inhibited by analgesic/antipyretic drugs such as acetaminophen, phenacetin, antipyrine, and dipyrone, and is potently inhibited by some nonsteroidal antiinflammatory drugs. Thus, inhibition of COX-3 could represent a primary central mechanism by which these drugs decrease pain and possibly fever.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                August 2012
                19 August 2012
                : 3
                : 8
                : 890-903
                Affiliations
                1 Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, East Melbourne, Victoria, Australia
                2 Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
                3 Jack Brockhoff Reconstructive Plastic Surgery Research Unit, Royal Melbourne Hospital and Department of Anatomy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
                4 Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
                Author notes
                Correspondence to: Steven Stacker, Steven.Stacker@ 123456petermac.org
                Article
                3478465
                23097685
                bf586889-da3e-453c-834d-a5d6f214618d
                Copyright: © 2012 Karnezis et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                Categories
                Research Perspectives

                Comments

                Comment on this article