79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ER Stress Induces Cleavage of Membrane-Bound ATF6 by the Same Proteases that Process SREBPs

      , , , , , , ,
      Molecular Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis.

          Sterol regulatory element-binding protein 1 (SREBP-1), a member of the basic-helix-loop-helix-leucine zipper (bHLH-ZIP) family of transcription factors, is synthesized as a 125 kd precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells, the membrane-bound precursor is cleaved to generate a soluble NH2-terminal fragment (apparent molecular mass, 68 kd) that translocates to the nucleus. This fragment, which includes the bHLH-ZIP domain, activates transcription of the genes for the LDL receptor and HMG CoA synthase. Sterols inhibit the cleavage of SREBP-1, and the 68 kd nuclear form is rapidly catabolized, thereby reducing transcription. ALLN, an inhibitor of neutral cysteine proteases, blocks the breakdown of the 68 kd form and superinduces sterol-regulated genes. Sterol-regulated proteolysis of a membrane-bound transcription factor provides a novel mechanism by which transcription can be regulated by membrane lipids.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid preferences for specific locations at the ends of alpha helices.

            A definition based on alpha-carbon positions and a sample of 215 alpha helices from 45 different globular protein structures were used to tabulate amino acid preferences for 16 individual positions relative to the helix ends. The interface residue, which is half in and half out of the helix, is called the N-cap or C-cap, whichever is appropriate. The results confirm earlier observations, such as asymmetrical charge distributions in the first and last helical turn, but several new, sharp preferences are found as well. The most striking of these are a 3.5:1 preference for Asn at the N-cap position, and a preference of 2.6:1 for Pro at N-cap + 1. The C-cap position is overwhelmingly dominated by Gly, which ends 34 percent of the helices. Hydrophobic residues peak at positions N-cap + 4 and C-cap - 4.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment.

              Sterol regulatory element binding proteins (SREBPs) are transcription factors attached to the endoplasmic reticulum. The NH2-segment, which activates transcription, is connected to membranes by a hairpin anchor formed by two transmembrane sequences and a short lumenal loop. Using H-Ras-SREBP-2 fusion proteins, we show that the NH2-segment is released from membranes by two sequential cleavages. The first, regulated by sterols, occurs in the lumenal loop. The second, not regulated by sterols, occurs within the first transmembrane domain. The liberated NH2-segment enters the nucleus and activates genes controlling cholesterol synthesis and uptake. Certain mutant Chinese hamster ovary cells are auxotrophic for cholesterol because they fail to carry out the second cleavage; the NH2-segment remains membrane-bound and transcription is not activated.
                Bookmark

                Author and article information

                Journal
                Molecular Cell
                Molecular Cell
                Elsevier BV
                10972765
                December 2000
                December 2000
                : 6
                : 6
                : 1355-1364
                Article
                10.1016/S1097-2765(00)00133-7
                11163209
                bf5b2653-3ace-42a8-afba-1c5ad0c0409a
                © 2000

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article