16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-647 Targets SRF-MYH9 Axis to Suppress Invasion and Metastasis of Gastric Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) play important roles in regulating tumour development and progression. Here we show that miR-647 is repressed in gastric cancer (GC), and associated with GC metastasis. Moreover, we identify that miR-647 can suppress GC cell migration and invasion in vitro. Mechanistically, we confirm miR-647 directly binds to the 3' untranslated regions of SRF mRNA, and SRF binds to the CArG box located at the MYH9 promoter. CCG-1423, an inhibitor of RhoA/SRF-mediated gene transcription, inhibits the expression of MYH9, especially in SRF downregulated cells. Overexpression of miR-647 inhibits MGC 80-3 cells' metastasis in orthotropic GC models, but increasing SRF expression in these cells reverses this change. Importantly, we found the synergistic inhibition effect of CCG-1423 and agomir-647, an engineered miRNA mimic, on cancer metastasis in orthotropic GC models. Our study demonstrates that miR-647 functions as a tumor metastasis suppressor in GC by targeting SRF/MYH9 axis.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the actin cytoskeleton in cancer cell migration and invasion.

          Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-214 targets ATF4 to inhibit bone formation.

            Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myocardin-Related Transcription Factors and SRF are required for cytoskeletal dynamics, invasion and experimental metastasis

              Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors, and regulate transcriptional activation by the Myocardin Related Transcription Factors (MRTFs), coactivators for Serum Response Factor (SRF). We used RNAi to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, where basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduces cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis; MRTF-depleted tumor cell xenografts exhibit reduced cell motility but proliferate normally. MRTF- and SRF-depleted tumor cells fail to colonise the lung from the bloodstream, being unable to persist following their initial arrival at the lung. Only a few genes exhibit MRTF-dependent expression in both cell lines. Two of these, MYH9 (MLC2) and MYL9 (NMHCIIa), are also required for invasion and lung colonisation. Conversely, expression of an activated MRTF increases lung colonisation by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus requires Rho-dependent nuclear signalling through the MRTF-SRF network.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2017
                2 August 2017
                : 7
                : 13
                : 3338-3353
                Affiliations
                [1 ]Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China;
                [2 ]Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China;
                [3 ]Leder Human Biology and Translational Medicine, Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115.
                Author notes
                ✉ Corresponding authors: Xiaolong Qi, Guoxin Li & Hao Liu, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery; Tel.: +86 20 61641681/ fax: +86 20 61641683; Xiaolong Qi, E-mail: qixiaolong@ 123456vip.163.com ; Guoxin Li, E-mail: gzliguoxin@ 123456163.com ; Hao Liu, E-mail: liuhaofbi@ 123456163.com

                * These authors contributed equally to this work

                † Present address: Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 China.

                ‡ Present address: Department of General Surgery, Panyu Central Hospital, Guangzhou, 511400 China

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov07p3338
                10.7150/thno.20512
                5595136
                28900514
                bf5dff07-42e5-42e9-a120-f3d91909836c
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 10 April 2017
                : 29 May 2017
                Categories
                Research Paper

                Molecular medicine
                gastric cancer,metastasis,microrna-647,myh9,srf.
                Molecular medicine
                gastric cancer, metastasis, microrna-647, myh9, srf.

                Comments

                Comment on this article