28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological specimens suffer radiation damage when imaged in an electron microscope, ultimately limiting the attainable resolution. At a given resolution, an optimal exposure can be defined that maximizes the signal-to-noise ratio in the image. Using a 2.6 Å resolution single particle cryo-EM reconstruction of rotavirus VP6, determined from movies recorded with a total exposure of 100 electrons/Å 2, we obtained accurate measurements of optimal exposure values over a wide range of resolutions. At low and intermediate resolutions, our measured values are considerably higher than obtained previously for crystalline specimens, indicating that both images and movies should be collected with higher exposures than are generally used. We demonstrate a method of using our optimal exposure values to filter movie frames, yielding images with improved contrast that lead to higher resolution reconstructions. This ‘high-exposure’ technique should benefit cryo-EM work on all types of samples, especially those of relatively low-molecular mass.

          DOI: http://dx.doi.org/10.7554/eLife.06980.001

          eLife digest

          Microscopes allow us to visualize objects that are invisible to the naked eye. One type of microscope—called the electron microscope—produces images using beams of particles known as electrons, which enables them to produce more detailed images than microscopes that use light.

          There are several ways to prepare samples for electron microscopy. For example, in ‘electron cryo-microscopy’—or cryo-EM for short—a sample is rapidly frozen to preserve its features before it is examined under the microscope. This technique generates images that can be analyzed by computers to produce three-dimensional models of individual viruses, proteins, and other tiny objects. Unfortunately, the samples need to be exposed to high-energy beams of electrons that will damage the sample while the images are gathered, which results in sample movement and blurry images that lack the finer details.

          The contrast between the sample and its background is one of the factors that determine the final quality of an image. The higher the contrast, the greater the level of structural information that can be obtained, but this requires the use of longer exposures to the electron beam. To overcome this issue, researchers found that instead of recording a single image, it is possible to record movies in which the movement of the sample under the electron beam can be tracked. After the movies are gathered, the movie frames are aligned using computer software to reduce the blurring caused by the sample moving and can then be used to make three-dimensional models.

          Grant and Grigorieff improved this method further by studying how quickly a large virus-like particle called ‘ rotavirus double-layered particle’ is damaged under the electron beam. These experiments identified an optimum range of exposure to electrons that provides the highest image contrast at any given level of detail. These findings were used to design an exposure filter that can be applied to the movie frames, allowing Grant and Grigorieff to visualize features of the virus that had not previously been observed by cryo-EM.

          This method was also used to study an assembly of proteins known as the proteasome, which is responsible for destroying old proteins. Grant and Grigorieff's findings should be useful for cryo-EM studies on many kinds of samples.

          DOI: http://dx.doi.org/10.7554/eLife.06980.002

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the TRPV1 ion channel determined by electron cryo-microscopy

          Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules.

            Radiation damage is the main problem which prevents the determination of the structure of a single biological macromolecule at atomic resolution using any kind of microscopy. This is true whether neutrons, electrons or X-rays are used as the illumination. For neutrons, the cross-section for nuclear capture and the associated energy deposition and radiation damage could be reduced by using samples that are fully deuterated and 15N-labelled and by using fast neutrons, but single molecule biological microscopy is still not feasible. For naturally occurring biological material, electrons at present provide the most information for a given amount of radiation damage. Using phase contrast electron microscopy on biological molecules and macromolecular assemblies of approximately 10(5) molecular weight and above, there is in theory enough information present in the image to allow determination of the position and orientation of individual particles: the application of averaging methods can then be used to provide an atomic resolution structure. The images of approximately 10,000 particles are required. Below 10(5) molecular weight, some kind of crystal or other geometrically ordered aggregate is necessary to provide a sufficiently high combined molecular weight to allow for the alignment. In practice, the present quality of the best images still falls short of that attainable in theory and this means that a greater number of particles must be averaged and that the molecular weight limitation is somewhat larger than the predicted limit. For X-rays, the amount of damage per useful elastic scattering event is several hundred times greater than for electrons at all wavelengths and energies and therefore the requirements on specimen size and number of particles are correspondingly larger. Because of the lack of sufficiently bright neutron sources in the foreseeable future, electron microscopy in practice provides the greatest potential for immediate progress.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular structure determination by electron microscopy of unstained crystalline specimens.

                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                29 May 2015
                2015
                : 4
                : e06980
                Affiliations
                [1 ]Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, United States
                [2 ]deptDepartment of Biochemistry, Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham, United States
                University of Utah School of Medicine , United States
                University of Utah School of Medicine , United States
                Author notes
                [* ]For correspondence: niko@ 123456grigorieff.org
                Article
                06980
                10.7554/eLife.06980
                4471936
                26023829
                bf6d1fd7-3548-4bd7-8b16-c34ad21a77b1
                © 2015, Grant and Grigorieff

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 12 February 2015
                : 28 May 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000011, Howard Hughes Medical Institute (HHMI);
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences (NIGMS);
                Award ID: GM103310
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Tools and Resources
                Biophysics and Structural Biology
                Custom metadata
                2.3
                The resolution of electron cryo-microscopy can be improved by using optimal exposure values to filter video frames.

                Life sciences
                high-dose imaging,movie processing,radiation damage,optimal exposure,20s proteasome,tomography,viruses

                Comments

                Comment on this article