19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of the MEI-1/MEI-2 Microtubule-Severing Katanin Complex in Early Caenorhabditis elegans Development

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After fertilization, rapid changes of the Caenorhabditis elegans cytoskeleton occur in the transition from meiosis to mitosis, requiring precise regulation. The MEI-1/ MEI-2 katanin microtubule-severing complex is essential for meiotic spindle formation but must be quickly inactivated to allow for proper formation of the mitotic spindle. MEI-1/ MEI-2 inactivation is dependent on multiple redundant pathways. The primary pathway employs the MEL-26 substrate adaptor for the CUL-3/cullin-based E3 ubiquitin ligase, which targets MEI-1 for proteosomal degradation. Here, we used quantitative antibody staining to measure MEI-1 levels to determine how other genes implicated in MEI-1 regulation act relative to CUL-3/ MEL-26. The anaphase-promoting complex/cyclosome, APC/C, the DYRK (Dual-specificity tyrosine-regulated kinase), MBK-2, and the CUL-2-based E3 ubiquitin ligase act together to degrade MEI-1, in parallel to MEL-26/ CUL-3. CUL-2 is known to keep MEL-26 low during meiosis, so CUL-2 apparently changes its target from MEL-26 in meiosis to MEI-1 in mitosis. RFL-1, an activator of cullin E3 ubiquitin ligases, activates CUL-2 but not CUL-3 for MEI-1 elimination. HECD-1 (HECT/Homologous to the E6AP carboxyl terminus domain) E3 ligase acts as a MEI-1 activator in meiosis but functions as an inhibitor during mitosis, without affecting levels of MEI-1 or MEI-2. Our results highlight the multiple layers of MEI-1 regulation that are required during the switch from the meiotic to mitotic modes of cell division.

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans.

          Prior to fertilization, oocytes undergo meiotic maturation (cell cycle progression) and ovulation (expulsion from the ovary). To begin the study of these processes in Caenorhabditis elegans, we have defined a time line of germline and somatic events by video microscopy. As the oocyte matures, its nuclear envelope breaks down and its cell cortex rearranges. Immediately thereafter, the oocyte is ovulated by increasing contraction of the myoepithelial gonadal sheath and relaxation of the distal spermatheca. By systematically altering the germ cell contents of the hermaphrodite using mutant strains, we have uncovered evidence of four cell-cell interactions that regulate maturation and ovulation. (1) Both spermatids and spermatozoa induce oocyte maturation. In animals with a feminized germline, maturation is inhibited and oocytes arrest in diakinesis. The introduction of sperm by mating restores maturation. (2) Sperm also directly promote sheath contraction. In animals with a feminized or tumorous germline, contractions are infrequent, whereas in animals with a masculinized germline or with sperm introduced by mating, contractions are frequent. (3 and 4) The maturing oocyte both induces spermathecal dilation and modulates sheath contractions at ovulation; dilation of the distal spermatheca and sharp increases in sheath contraction rates are only observed in the presence of a maturing oocyte. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3.

            Programmed destruction of regulatory proteins through the ubiquitin-proteasome system is a widely used mechanism for controlling signalling pathways. Cullins are proteins that function as scaffolds for modular ubiquitin ligases typified by the SCF (Skp1-Cul1-F-box) complex. The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to Cul1, and a member of the F-box family of proteins. F-box proteins bind Skp1 through the F-box motif, and substrates by means of carboxy-terminal protein interaction domains. Similarly, Cul2 and Cul5 interact with BC-box-containing specificity factors through the Skp1-like protein elongin C. Cul3 is required for embryonic development in mammals and Caenorhabditis elegans but its specificity module is unknown. Here we report the identification of a large family of BTB-domain proteins as substrate-specific adaptors for C. elegans CUL-3. Biochemical studies using the BTB protein MEL-26 and its genetic target MEI-1 (refs 12, 13) indicate that BTB proteins merge the functional properties of Skp1 and F-box proteins into a single polypeptide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of katanin, an ATPase that severs and disassembles stable microtubules.

              Eukaryotic cells rapidly reorganize their microtubule cytoskeleton during the cell cycle, differentiation, and cell migration. In this study, we have purified a heterodimeric protein, katanin, that severs and disassembles microtubules to tubulin dimers. The disassembled tubulin can repolymerize, indicating that it is not irreversibly modified or denatured in the reaction. Katanin is a microtubule-stimulated ATPase and requires ATP hydrolysis to sever microtubules. Katanin represents a novel type of enzyme that utilizes energy from nucleotide hydrolysis to break tubulin-tubulin bonds within a microtubule polymer, a process that may aid in disassembling complex microtubule arrays within cells.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                12 August 2016
                October 2016
                : 6
                : 10
                : 3257-3268
                Affiliations
                [1]Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, T2N 4N1, Canada
                Author notes
                [1]

                These authors contributed equally to this work.

                [2 ]Corresponding author: Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, AB T2N 4N1, Canada. E-mail: mains@ 123456ucalgary.ca
                Article
                GGG_031666
                10.1534/g3.116.031666
                5068946
                27527792
                bf6f559f-2b70-43ce-8dc4-89cd3e849c61
                Copyright © 2016 Beard et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 May 2016
                : 10 August 2016
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 86, Pages: 12
                Categories
                Investigations

                Genetics
                meiosis,spindle,microtubule severing,embryo,katanin,wormbook
                Genetics
                meiosis, spindle, microtubule severing, embryo, katanin, wormbook

                Comments

                Comment on this article