10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Premature senescence is a key process in the progression of diabetic nephropathy (DN). Premature senescence of renal tubular epithelial cells (RTEC) in DN may result from the accumulation of damaged mitochondria. Mitophagy is the principal process that eliminates damaged mitochondria through PTEN-induced putative kinase 1 (PINK1)-mediated recruitment of optineurin (OPTN) to mitochondria. We aimed to examine the involvement of OPTN in mitophagy regulation of cellular senescence in RTEC in the context of DN. In vitro, the expression of senescence markers P16, P21, DcR2, SA-β-gal, SAHF, and insufficient mitophagic degradation marker (mitochondrial P62) in mouse RTECs increased after culture in 30 mM high-glucose (HG) conditions for 48 h. Mitochondrial fission/mitophagy inhibitor Mdivi-1 significantly enhanced RTEC senescence under HG conditions, whereas autophagy/mitophagy agonist Torin1 inhibited cell senescence. MitoTempo inhibited HG-induced mitochondrial reactive oxygen species and cell senescence with or without Mdivi-1. The expression of PINK1 and OPTN, two regulatory factors for mitophagosome formation, decreased significantly after HG stimulation. Overexpression of PINK1 did not enhance mitophagosome formation under HG conditions. OPTN silencing significantly inhibited HG-induced mitophagosome formation, and overexpression of OPTN relieved cellular senescence through promoting mitophagy. In clinical specimens, renal OPTN expression was gradually decreased with increased tubulointerstitial injury scores. OPTN-positive renal tubular cells did not express senescence marker P16. OPTN expression also negatively correlated with serum creatinine levels, and positively correlated with eGFR. Thus, OPTN-mediated mitophagy plays a crucial regulatory role in HG-induced RTEC senescence in DN. OPTN may, therefore, be a potential antisenescence factor in DN.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Pathologic classification of diabetic nephropathy.

          Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PINK1/Parkin-mediated mitophagy in mammalian cells.

            Mitochondria-specific autophagy (mitophagy) is a fundamental process critical for maintaining mitochondrial fitness in a myriad of cell types. Particularly, mitophagy contributes to mitochondrial quality control by selectively eliminating dysfunctional mitochondria. In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway. Notably, ubiquitin and deubiquitinases play vital roles in modulating Parkin activity and mitophagy efficiency. In this review, we highlight recent breakthroughs addressing the key issues of how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin-mediated mitophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenetic mechanisms of diabetic nephropathy.

              Diabetes is the leading cause of ESRD because diabetic nephropathy develops in 30 to 40% of patients. Diabetic nephropathy does not develop in the absence of hyperglycemia, even in the presence of a genetic predisposition. Multigenetic predisposition contributes in the development of diabetic nephropathy, thus supporting that many factors are involved in the pathogenesis of the disease. Hyperglycemia induces renal damage directly or through hemodynamic modifications. It induces activation of protein kinase C, increased production of advanced glycosylation end products, and diacylglycerol synthesis. In addition, it is responsible for hemodynamic alterations such as glomerular hyperfiltration, shear stress, and microalbuminuria. These alterations contribute to an abnormal stimulation of resident renal cells that produce more TGF-beta1. This growth factor upregulates GLUT-1, which induces an increased intracellular glucose transport and D-glucose uptake. TGF-beta1 causes augmented extracellular matrix protein deposition (collagen types I, IV, V, and VI; fibronectin, and laminin) at the glomerular level, thus inducing mesangial expansion and glomerular basement membrane thickening. However, low enzymatic degradation of extracellular matrix contributes to an excessive accumulation. Because hyperglycemia is the principal factor responsible for structural alterations at the renal level, glycemic control remains the main target of the therapy, whereas pancreas transplantation is the best approach for reducing the renal lesions.
                Bookmark

                Author and article information

                Contributors
                +86-23-68757871 , heynmail@yahoo.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                24 January 2018
                24 January 2018
                February 2018
                : 9
                : 2
                : 105
                Affiliations
                ISNI 0000 0004 1760 6682, GRID grid.410570.7, Department of Nephrology, Daping Hospital, Research Institute of Surgery, , Third Military Medical University, ; Chongqing, PR China
                Article
                127
                10.1038/s41419-017-0127-z
                5833650
                29367621
                bf7e0d91-9d7b-4d94-a898-3dff24cdc323
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 July 2017
                : 3 November 2017
                : 6 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article