42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein.

      The EMBO Journal
      Amino Acid Motifs, Amino Acid Sequence, Carrier Proteins, chemistry, metabolism, ultrastructure, Cryoelectron Microscopy, Crystallography, X-Ray, Gene Expression Regulation, Bacterial, Host Factor 1 Protein, Integration Host Factors, Macromolecular Substances, Models, Molecular, Molecular Sequence Data, Nucleic Acid Conformation, Protein Binding, Protein Biosynthesis, Protein Conformation, Protein Structure, Tertiary, RNA, Bacterial, RNA, Messenger, Recombinant Fusion Proteins, Sequence Alignment, Sequence Homology, Amino Acid, Staphylococcus aureus, Substrate Specificity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In prokaryotes, Hfq regulates translation by modulating the structure of numerous RNA molecules by binding preferentially to A/U-rich sequences. To elucidate the mechanisms of target recognition and translation regulation by Hfq, we determined the crystal structures of the Staphylococcus aureus Hfq and an Hfq-RNA complex to 1.55 and 2.71 A resolution, respectively. The structures reveal that Hfq possesses the Sm-fold previously observed only in eukaryotes and archaea. However, unlike these heptameric Sm proteins, Hfq forms a homo-hexameric ring. The Hfq-RNA structure reveals that the single-stranded hepta-oligoribonucleotide binds in a circular conformation around a central basic cleft, whereby Tyr42 residues from adjacent subunits stack with six of the bases, and Gln8, outside the Sm motif, provides key protein-base contacts. Such binding suggests a mechanism for Hfq function.

          Related collections

          Author and article information

          Comments

          Comment on this article