1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations induced by ultraviolet light.

          The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electron transfer between bases in double helical DNA.

            Fluorescent analogs of adenine that selectively oxidize guanine were used to investigate photoinduced electron transfer through the DNA pi-stack as a function of reactant stacking and energetics. Small variations in these factors led to profound changes in the kinetics and distance dependences of DNA-mediated electron-transfer reactions. Values of beta, a parameter reflecting the dependence of electron transfer on distance, ranged from 0.1 to 1.0 per angstrom. Strong stacking interactions result in the fastest electron-transfer kinetics. Electrons are thus transported preferentially through an intrastrand rather than interstrand pathway. Reactant energetics also modulate the distance dependence of DNA-mediated charge transport. These studies may resolve the range of disparate results previously reported, and paradigms must now be developed to describe these properties of the DNA pi-stack, which can range from insulator- to "wire"-like.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA labeling in living cells.

              Live cell fluorescence microscopy experiments often require visualization of the nucleus and the chromatin to determine the nuclear morphology or the localization of nuclear compartments. We compared five different DNA dyes, TOPRO-3, TOTO-3, propidium iodide, Hoechst 33258, and DRAQ5, to test their usefulness in live cell experiments with continuous imaging and photobleaching in widefield epifluorescence and confocal laser scanning microscopy. In addition, we compared the DNA stainings with fluorescent histones as an independent fluorescent label to mark chromatin. From the dyes tested, only Hoechst and DRAQ5 could be used to stain DNA in living cells. However, DRAQ5 had several advantages, namely low photobleaching, labeling of the chromatin compartments comparable to that of H2B-GFP fusion proteins, and deep red excitation/emission compatible with available genetically encoded fluorescent proteins such as C/G/YFP or mRFP. The DNA dye DRAQ5 is well suited for chromatin visualization in living cells and can easily be combined with other fluorophores with blue to orange emission. (c) 2005 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley
                00448249
                April 26 2011
                April 26 2011
                April 06 2011
                : 123
                : 18
                : 4266-4269
                Article
                10.1002/ange.201007386
                bfa270d6-cded-4adc-ab57-d5ae11abbc2e
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article