4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-term care, from neonatal period to adulthood, of children born small for gestational age

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract.

          Children born small for gestational age (SGA) face an increased risk of health problems in later life, particularly persistent short stature, neurocognitive dysfunction, impaired renal and pulmonary function, decreased bone density, sensorineural hearing loss, premature adrenarche, and metabolic syndrome. Insulin resistance appears to be a key component underlying these metabolic complications. Long-term, continuous, GH treatments in short children born SGA lead to a normalization of height through childhood to adulthood. Recombinant human GH has been proven to be relatively safe. We recommend early surveillance in a growth clinic for children born SGA without catch-up growth. Obesity, insulin resistance, and the risk of metabolic syndrome increase with catch-up growth, but short stature and cognitive dysfunction increase without catch-up growth in children born SGA. A solution to this catch-up dilemma is breast feeding for a minimum of 6 to 12 mo. Because the overall prevalence of metabolic risk factors is very low, routine evaluation of metabolic parameters is not recommended for all children born SGA, but it may be useful to consider metabolic evaluations in overweight or obese children born SGA. Since children born SGA have many risk factors, long-term management from neonate to adulthood is very important.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth

          Two follow-up studies were carried out to determine whether lower birthweight is related to the occurrence of syndrome X-Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia. The first study included 407 men born in Hertfordshire, England between 1920 and 1930 whose weights at birth and at 1 year of age had been recorded by health visitors. The second study included 266 men and women born in Preston, UK, between 1935 and 1943 whose size at birth had been measured in detail. The prevalence of syndrome X fell progressively in both men and women, from those who had the lowest to those who had the highest birthweights. Of 64-year-old men whose birthweights were 2.95 kg (6.5 pounds) or less, 22% had syndrome X. Their risk of developing syndrome X was more than 10 times greater than that of men whose birthweights were more than 4.31 kg (9.5 pounds). The association between syndrome X and low birthweight was independent of duration of gestation and of possible confounding variables including cigarette smoking, alcohol consumption and social class currently or at birth. In addition to low birthweight, subjects with syndrome X had small head circumference and low ponderal index at birth, and low weight and below-average dental eruption at 1 year of age. It is concluded that Type 2 diabetes and hypertension have a common origin in sub-optimal development in utero, and that syndrome X should perhaps be re-named "the small-baby syndrome".
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adult height after long-term, continuous growth hormone (GH) treatment in short children born small for gestational age: results of a randomized, double-blind, dose-response GH trial.

            The GH dose-response effect of long-term continuous GH treatment on adult height (AH) was evaluated in 54 short children born small for gestational age (SGA) who were participating in a randomized, double-blind, dose-response trial. Patients were randomly and blindly assigned to treatment with either 3 IU (group A) or 6 IU (group B) GH/m(2).d ( approximately 0.033 or 0.067 mg/kg.d, respectively). The mean (+/-SD) birth length was -3.6 (1.4), the age at the start of the study was 8.1 (1.9) yr, and the height SD score (SDS) at the start of the study -3.0 (0.7). Seventeen of the 54 children were partially GH deficient (stimulated GH peak, 10-20 mU/liter). Fifteen non-GH-treated, non-GH-deficient, short children born SGA, with similar inclusion criteria, served as controls [mean (+/-SD) birth length, -3.3 (1.2); age at start, 7.8 (1.7) yr; height SDS at start, -2.6 (0.5)]. GH treatment resulted in an AH above -2 SDS in 85% of the children after a mean (+/-SD) GH treatment period of 7.8 (1.7) yr. The mean (SD) AH SDS was -1.1 (0.7) for group A and -0.9 (0.8) for group B, resulting from a mean (+/-SD) gain in height SDS of 1.8 (0.7) for group A and 2.1 (0.8) for group B. No significant differences between groups A and B were found for AH SDS (mean difference, 0.3 SDS; 95% confidence interval, -0.2, 0.6; P > 0.2) and gain in height SDS (mean difference, 0.3 SDS; 95% confidence interval, -0.1, 0.7; P > 0.1). When corrected for target height, the mean corrected AH SDS was -0.2 (0.8) for group A and -0.4 (0.9) for group B. The mean (+/-SD) AH SDS of the control group [-2.3 (0.7)] was significantly lower than that of the GH-treated group (P < 0.001). Multiple regression analysis indicated the following predictive variables for AH SDS: target height SDS, height SDS, and chronological age minus bone age (years) at the start of the study. GH dose had no significant effect. In conclusion, long-term continuous GH treatment in short children born SGA without signs of persistent catch-up growth leads to a normalization of AH, even with a GH dose of 3 IU/m(2).d ( approximately 0.033 mg/kg.d).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of response to growth hormone treatment in short children born small for gestational age: analysis of data from KIGS (Pharmacia International Growth Database).

              A model was developed that allows physicians to individualize GH treatment in children born short for gestational age (SGA) who fail to show spontaneous catch-up growth. Data from children (n = 613) in a large pharmacoepidemiological survey, the KIGS (Pharmacia International Growth Database), or who had participated in clinical trials were used to develop the model. Another group of similar children (n = 68) from KIGS was used for validation. In the first year of GH treatment, the growth response correlated positively with GH dose, weight at the start of GH treatment, and midparental height SD score and negatively with age at treatment start. Using this model, 52% of the variability of the growth response could be explained, with a mean error SD of 1.3 cm. GH dose was the most important response predictor (35% of variability), followed by age at treatment start. The second year growth response was best predicted by a three-parameter model (height velocity in yr 1 of treatment, age at start of treatment, and GH dose), which accounted for 34% of the variability, with an error SD of 1.1 cm. The first year response to GH treatment was the most important predictor of the second year response, accounting for 29% of the variability. No statistically significant differences between the predicted and observed growth responses were found when the models were applied to the validation groups. In conclusion, using simple variables, we have developed a model that can be used in clinical practice to adjust the GH dose to achieve the desired growth response in patients born SGA. Furthermore, this model can be used to provide patients with a realistic expectation of treatment and may help to identify compliance problems or other underlying causes of treatment failure.
                Bookmark

                Author and article information

                Journal
                Clin Pediatr Endocrinol
                Clin Pediatr Endocrinol
                CPE
                Clinical Pediatric Endocrinology
                The Japanese Society for Pediatric Endocrinology
                0918-5739
                1347-7358
                19 October 2019
                2019
                : 28
                : 4
                : 97-103
                Affiliations
                [1 ] Department of Pediatrics, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Republic of Korea
                Author notes
                Corresponding author: Il Tae Hwang, M.D., Ph.D., Department of Pediatrics, Kangdong Sacred Heart Hospital, 150, Seongan-ro, Gangdong-gu, Seoul, Republic of Korea
                Article
                2019-0015
                10.1297/cpe.28.97
                6801360
                31666762
                bfa46e7d-c2bb-4282-ba85-17093db39c13
                2019©The Japanese Society for Pediatric Endocrinology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

                History
                : 18 April 2019
                : 19 May 2019
                Categories
                Review (KSPE-JSPE Plenary Lecture)

                small for gestational age,cognition,growth,metabolic syndrome

                Comments

                Comment on this article