14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing modulators of monoamine transporters using virtual screening techniques

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters.

          Na+/Cl--dependent transporters terminate synaptic transmission by using electrochemical gradients to drive the uptake of neurotransmitters, including the biogenic amines, from the synapse to the cytoplasm of neurons and glia. These transporters are the targets of therapeutic and illicit compounds, and their dysfunction has been implicated in multiple diseases of the nervous system. Here we present the crystal structure of a bacterial homologue of these transporters from Aquifex aeolicus, in complex with its substrate, leucine, and two sodium ions. The protein core consists of the first ten of twelve transmembrane segments, with segments 1-5 related to 6-10 by a pseudo-two-fold axis in the membrane plane. Leucine and the sodium ions are bound within the protein core, halfway across the membrane bilayer, in an occluded site devoid of water. The leucine and ion binding sites are defined by partially unwound transmembrane helices, with main-chain atoms and helix dipoles having key roles in substrate and ion binding. The structure reveals the architecture of this important class of transporter, illuminates the determinants of substrate binding and ion selectivity, and defines the external and internal gates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SLC6 neurotransmitter transporters: structure, function, and regulation.

            The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              X-ray structure of dopamine transporter elucidates antidepressant mechanism.

              Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 September 2015
                2015
                : 6
                : 223
                Affiliations
                [1] 1Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, PA, USA
                [2] 2Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, PA, USA
                Author notes

                Edited by: Jeffry D. Madura, Duquesne University, USA

                Reviewed by: Yan Dong, University of Pittsburgh, USA; Bronwyn M. Kivell, Victoria University of Wellington, New Zealand

                *Correspondence: Sandhya Kortagere, Department of Microbiology and Immunology, Drexel University College of Medicine, G81, 2900 Queen Lane, Philadelphia, PA 19129, USA, sandhya.kortagere@ 123456drexelmed.edu

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology.

                Article
                10.3389/fphar.2015.00223
                4586420
                26483692
                bfac6d13-bab6-4907-b483-c70a66360df6
                Copyright © 2015 Mortensen and Kortagere.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2015
                : 17 September 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 71, Pages: 8, Words: 6850
                Funding
                Funded by: National Institute of Mental Health 10.13039/100000025
                Award ID: R01 MH106912-01A1
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                dopamine transporter,modeling and simulations,monoamine transporters,norepinephrine transporter,serotonin transporter,hybrid structure based screening,virtual screening

                Comments

                Comment on this article