8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      U(VI) Sorption and Reduction Kinetics on the Magnetite (111) Surface

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          March 21 2012
          March 14 2012
          : 46
          : 7
          : 3821-3830
          Article
          10.1021/es203878c
          22394451
          bfaca5bc-b0d9-4246-99af-3fa325b2104c
          © 2012
          History

          Comments

          Comment on this article