21
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets

      , , , , ,
      Free Radical Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When faced with increased workload the heart undergoes remodelling, where it increases its muscle mass in an attempt to preserve normal function. This is referred to as cardiac hypertrophy and if sustained, can lead to impaired contractile function. Experimental evidence supports oxidative stress as a critical inducer of both genetic and acquired forms of cardiac hypertrophy, a finding which is reinforced by elevated levels of circulating oxidative stress markers in patients with cardiac hypertrophy. These observations formed the basis for using antioxidants as a therapeutic means to attenuate cardiac hypertrophy and improve clinical outcomes. However, the use of antioxidant therapies in the clinical setting has been associated with inconsistent results, despite antioxidants having been shown to exert protection in several animal models of cardiac hypertrophy. This has forced us to revaluate the mechanisms, both upstream and downstream of oxidative stress, where recent studies demonstrate that apart from conventional mediators of oxidative stress, metabolic disturbances, mitochondrial dysfunction and inflammation as well as dysregulated autophagy and protein homeostasis contribute to disease pathophysiology through mechanisms involving oxidative stress. Importantly, novel therapeutic targets have been identified to counteract oxidative stress and attenuate cardiac hypertrophy but more interestingly, the repurposing of drugs commonly used to treat metabolic disorders, hypertension, peripheral vascular disease, sleep disorders and arthritis have also been shown to improve cardiac function through suppression of oxidative stress. Here, we review the latest literature on these novel mechanisms and intervention strategies with the aim of better understanding the complexities of oxidative stress for more precise targeted therapeutic approaches to prevent cardiac hypertrophy.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative Stress

          Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radicals in the physiological control of cell function.

            At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Signal transduction by reactive oxygen species

              Although historically viewed as purely harmful, recent evidence suggests that reactive oxygen species (ROS) function as important physiological regulators of intracellular signaling pathways. The specific effects of ROS are modulated in large part through the covalent modification of specific cysteine residues found within redox-sensitive target proteins. Oxidation of these specific and reactive cysteine residues in turn can lead to the reversible modification of enzymatic activity. Emerging evidence suggests that ROS regulate diverse physiological parameters ranging from the response to growth factor stimulation to the generation of the inflammatory response, and that dysregulated ROS signaling may contribute to a host of human diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Free Radical Biology and Medicine
                Free Radical Biology and Medicine
                Elsevier BV
                08915849
                April 2021
                April 2021
                : 166
                : 297-312
                Article
                10.1016/j.freeradbiomed.2021.02.040
                33675957
                bfaf2464-2367-4d1a-a1ea-b6b8f0dd213f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article