26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously, (c) the first wearable system that offers both ultrasound imaging and fluorescence imaging capacities, and (d) the first demonstration of goggle-to-goggle communication to share stereoscopic views for medical guidance.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping.

          Invisible NIR fluorescent light can provide high sensitivity, high-resolution, and real-time image-guidance during oncologic surgery, but imaging systems that are presently available do not display this invisible light in the context of surgical anatomy. The FLARE imaging system overcomes this major obstacle. Color video was acquired simultaneously, and in real-time, along with two independent channels of NIR fluorescence. Grayscale NIR fluorescence images were converted to visible "pseudo-colors" and overlaid onto the color video image. Yorkshire pigs weighing 35 kg (n = 5) were used for final preclinical validation of the imaging system. A six-patient pilot study was conducted in women undergoing sentinel lymph node (SLN) mapping for breast cancer. Subjects received (99m)Tc-sulfur colloid lymphoscintigraphy. In addition, 12.5 microg of indocyanine green (ICG) diluted in human serum albumin (HSA) was used as an NIR fluorescent lymphatic tracer. The FLARE system permitted facile positioning in the operating room. NIR light did not change the look of the surgical field. Simultaneous pan-lymphatic and SLN mapping was demonstrated in swine using clinically available NIR fluorophores and the dual NIR capabilities of the system. In the pilot clinical trial, a total of nine SLNs were identified by (99m)Tc- lymphoscintigraphy and nine SLNs were identified by NIR fluorescence, although results differed in two patients. No adverse events were encountered. We describe the successful clinical translation of a new NIR fluorescence imaging system for image-guided oncologic surgery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation.

            The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm), planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translation of near-infrared fluorescence imaging technologies: emerging clinical applications.

              Technical developments in near-infrared fluorescence (NIRF) imaging and tomography have enabled recent translation into investigational human studies. Noninvasive imaging of the lymphatic vasculature for diagnosis and assessment of function has been uniquely accomplished with NIR using indocyanine green (ICG), a nonspecific dye that has comparatively poor fluorescent properties compared to emerging dyes. Adjunct use of NIRF-ICG for (a) intraoperative sentinel lymph node mapping for cancer staging, (b) video-angiography during surgery, and (c) discrimination of malignant from benign breast lesions detected by mammography and ultrasongraphy also evidences the clinical utility of NIRF. Future NIRF imaging agents that consist of bright fluorescent dyes conjugated to disease-targeting moieties promise molecular imaging and image-guided surgery. In this review, emerging NIRF imaging is described within the context of nuclear imaging technologies that remain the "gold standard" of molecular imaging.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 November 2015
                2015
                : 10
                : 11
                : e0141956
                Affiliations
                [1 ]Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States of America
                [2 ]John H. Glenn Research Center, Cleveland, Ohio, United States of America
                [3 ]Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
                University of Pennsylvania, UNITED STATES
                Author notes

                Competing Interests: Dr. Papay receives or has the right to receive royalty payments for inventions or discoveries commercialized through the companies: Autonomic Technologies, Inc. Dr. Liu is an inventor for a relevant patent owned by the University of Akron. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: YL FP CAM WKT. Performed the experiments: YL FP CAM CP. Analyzed the data: YL FP CAM WKT. Contributed reagents/materials/analysis tools: YL FP CAM WKT. Wrote the paper: YL FP CAM.

                Article
                PONE-D-15-22714
                10.1371/journal.pone.0141956
                4631490
                26529249
                bfc80744-170f-4505-bfc0-cde4e203bebf

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 25 May 2015
                : 15 October 2015
                Page count
                Figures: 6, Tables: 0, Pages: 17
                Funding
                This study was supported in part by grants from the Ohio Department of Development Third Frontier Grant (TVSF 15-0123), the LEAP Award (F14-10-LIU-WEB), the National Aeronautics and Space Administration (NASA Space Technology Research Fellowship NNX14AL37H), and the University of Akron Startup Funds. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article