4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of rosuvastatin flexible lipid-based nanoparticles: promising nanocarriers for improving intestinal cells cytotoxicity

      research-article
      1 , 2 ,
      BMC Pharmacology & Toxicology
      BioMed Central
      Rosuvastatin, Optimization, Chitosomes, Liposomes, cell viability, Cytotoxicity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rosuvastatin (RSV) is a poorly water-soluble drug that has an absolute oral bioavailability of only 20%. The aim of this work was to prepare a positively charged chitosan coated flexible lipid-based vesicles (chitosomes) and compare their characteristics to the corresponding negatively charged flexible liposomal nanoparticles (NPs) in order to develop new RSV nanocarrier systems.

          Methods

          Three formulation factors affecting the development of chitosomes nano-formulation were optimized for their effects on the particles size, entrapment efficiency (EE) and zeta potential. The optimized flexible chitosomes and their corresponding liposomal NPs were characterized for morphology, in vitro release, flexibility and intestinal cell viability. The half maximum inhibitory concentrations (IC50) for both formulations were calculated.

          Results

          The drug to lipid molar ratio, edge activator percent and the chitosan concentration were significantly affecting the characteristics of NPs. The optimized chitosomes nano-formulation exhibited larger size, higher EE and greater zeta potential value when compared to the corresponding liposomal NPs. Both formulations showed a spherical shape nanostructure with a marked outer shell for the chitosomes nano-formulation. Chitosomes illustrated an extended drug release profile when compared with the corresponding liposomal NPs and the prepared drug suspension. Flexibility of both vesicles was confirmed with superiority of liposomal NPs over chitosomes. RSV loaded chitosomes nano-formulation exhibited lower IC50 values and higher therapeutic window while liposomal NPs were compatible with the intestinal cells.

          Conclusions

          RSV loaded chitosomes nano-formulation could be considered as a promising nanocarrier system with a marked cytotoxic activity while, RSV loaded liposomal NPs are suitable nanocarrier to improve RSV activity in treatment of cardiovascular disorders.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial.

          Prior intravascular ultrasound (IVUS) trials have demonstrated slowing or halting of atherosclerosis progression with statin therapy but have not shown convincing evidence of regression using percent atheroma volume (PAV), the most rigorous IVUS measure of disease progression and regression. To assess whether very intensive statin therapy could regress coronary atherosclerosis as determined by IVUS imaging. Prospective, open-label blinded end-points trial (A Study to Evaluate the Effect of Rosuvastatin on Intravascular Ultrasound-Derived Coronary Atheroma Burden [ASTEROID]) was performed at 53 community and tertiary care centers in the United States, Canada, Europe, and Australia. A motorized IVUS pullback was used to assess coronary atheroma burden at baseline and after 24 months of treatment. Each pair of baseline and follow-up IVUS assessments was analyzed in a blinded fashion. Between November 2002 and October 2003, 507 patients had a baseline IVUS examination and received at least 1 dose of study drug. After 24 months, 349 patients had evaluable serial IVUS examinations. All patients received intensive statin therapy with rosuvastatin, 40 mg/d. Two primary efficacy parameters were prespecified: the change in PAV and the change in nominal atheroma volume in the 10-mm subsegment with the greatest disease severity at baseline. A secondary efficacy variable, change in normalized total atheroma volume for the entire artery, was also prespecified. The mean (SD) baseline low-density lipoprotein cholesterol (LDL-C) level of 130.4 (34.3) mg/dL declined to 60.8 (20.0) mg/dL, a mean reduction of 53.2% (P<.001). Mean (SD) high-density lipoprotein cholesterol (HDL-C) level at baseline was 43.1 (11.1) mg/dL, increasing to 49.0 (12.6) mg/dL, an increase of 14.7% (P<.001). The mean (SD) change in PAV for the entire vessel was -0.98% (3.15%), with a median of -0.79% (97.5% CI, -1.21% to -0.53%) (P<.001 vs baseline). The mean (SD) change in atheroma volume in the most diseased 10-mm subsegment was -6.1 (10.1) mm3, with a median of -5.6 mm3 (97.5% CI, -6.8 to -4.0 mm3) (P<.001 vs baseline). Change in total atheroma volume showed a 6.8% median reduction; with a mean (SD) reduction of -14.7 (25.7) mm3, with a median of -12.5 mm3 (95% CI, -15.1 to -10.5 mm3) (P<.001 vs baseline). Adverse events were infrequent and similar to other statin trials. Very high-intensity statin therapy using rosuvastatin 40 mg/d achieved an average LDL-C of 60.8 mg/dL and increased HDL-C by 14.7%, resulting in significant regression of atherosclerosis for all 3 prespecified IVUS measures of disease burden. Treatment to LDL-C levels below currently accepted guidelines, when accompanied by significant HDL-C increases, can regress atherosclerosis in coronary disease patients. Further studies are needed to determine the effect of the observed changes on clinical outcome. ClinicalTrials.gov Identifier: NCT00240318.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

            Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chitosan and chitosan coating nanoparticles for the treatment of brain disease

                Bookmark

                Author and article information

                Contributors
                dr_tarek_nour@yahoo.com , tabdelnapy@kau.edu.sa
                Journal
                BMC Pharmacol Toxicol
                BMC Pharmacol Toxicol
                BMC Pharmacology & Toxicology
                BioMed Central (London )
                2050-6511
                21 February 2020
                21 February 2020
                2020
                : 21
                : 14
                Affiliations
                [1 ]ISNI 0000 0001 0619 1117, GRID grid.412125.1, Department of Pharmaceutics, Faculty of Pharmacy, , King Abdulaziz University, ; Jeddah, 21589 Kingdom of Saudi Arabia
                [2 ]ISNI 0000 0001 2155 6022, GRID grid.411303.4, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, , Al-Azhar University, ; Cairo, Egypt
                Author information
                http://orcid.org/0000-0002-9247-4400
                Article
                393
                10.1186/s40360-020-0393-8
                7035742
                32085802
                bfc8f0ff-a04f-4671-8f62-4cb475bcec8a
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 November 2019
                : 12 February 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004054, King Abdulaziz University;
                Award ID: G: 102-166-1440
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Toxicology
                rosuvastatin,optimization,chitosomes,liposomes,cell viability,cytotoxicity
                Toxicology
                rosuvastatin, optimization, chitosomes, liposomes, cell viability, cytotoxicity

                Comments

                Comment on this article