+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toll-like receptor 4 deficiency: Smaller infarcts, but nogain in function

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).


          Infarct size (IS) in C3H/HeJ assessed by TTC staining after 60 min ischemia and 24h reperfusion was significantly smaller than in WT. Despite a smaller infarct size, echocardiography showed no functional difference between C3H/HeJ and WT. Left-ventricular developed pressure measured with a left-ventricular catheter was lower in C3H/HeJ (63.0 ± 4.2 mmHg vs. 77.9 ± 1.7 mmHg in WT, p < 0.05). Serum cytokine levels and myocardial IL-6 were higher in WT than in C3H/HeJ (p < 0.05). C3H/HeJ MI/R showed increased myocardial IL-1β and IL-6 expression compared to their respective shams (p < 0.05), indicating TLR4-independent cytokine activation due to MI/R.


          These results demonstrate that, although a mutant TLR4 signaling cascade reduces myocardial IS and serum cytokine levels, it does not preserve myocardial function. The change in inflammatory response, secondary to a non-functional TLR-4 receptor, may contribute to the observed dichotomy between infarct size and function in the TLR-4 mutant mouse.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.

          Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.
            • Record: found
            • Abstract: found
            • Article: not found

            A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.

            Induction of the adaptive immune response depends on the expression of co-stimulatory molecules and cytokines by antigen-presenting cells. The mechanisms that control the initial induction of these signals upon infection are poorly understood. It has been proposed that their expression is controlled by the non-clonal, or innate, component of immunity that preceded in evolution the development of an adaptive immune system in vertebrates. We report here the cloning and characterization of a human homologue of the Drosophila toll protein (Toll) which has been shown to induce the innate immune response in adult Drosophila. Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kappaB pathway. We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kappaB and the expression of NF-kappaB-controlled genes for the inflammatory cytokines IL-1, IL-6 and IL-8, as well as the expression of the co-stimulatory molecule B7.1, which is required for the activation of naive T cells.
              • Record: found
              • Abstract: found
              • Article: not found

              Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex.

               K Ohashi,  V Burkart,  H Kolb (2000)
              Human heat shock protein 60 (hsp60) elicits a potent proinflammatory response in cells of the innate immune system and therefore has been proposed as a danger signal of stressed or damaged cells. We report here that macrophages of C3H/HeJ mice, carrying a mutant Toll-like-receptor (Tlr) 4 are nonresponsive to hsp60. Both the induction of TNF-alpha and NO formation were found dependent on a functional Tlr4 whereas stimulation of macrophages by CpG DNA was Tlr4 independent. We conclude that Tlr4 mediates hsp60 signaling. This is the first report of a putative endogenous ligand of the Tlr4 complex.

                Author and article information

                BMC Physiol
                BMC Physiology
                BioMed Central (London )
                25 June 2007
                : 7
                : 5
                [1 ]Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Germany
                [2 ]Department of Internal Medicine, University of Bonn, Germany
                [3 ]Institute of Physiology, University of Bonn, Germany
                [4 ]Department of Internal Medicine, University of Bonn, Germany
                [5 ]Division of Cardiovascular Medicine, University of California, Davis, USA
                Copyright © 2007 Kim et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Research Article

                Anatomy & Physiology


                Comment on this article