10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1 flox/flox ; Wnt1-Cre (Nell-1 Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1 Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/β-catenin markers (Osteocalcin and active-β-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-β-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1 Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1 Wnt1 KO mice. Nell-1 Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/β-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue origins and interactions in the mammalian skull vault.

          During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest-mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain.

            The Wnt-1 (int-1) proto-oncogene, which encodes a putative signaling molecule, is expressed exclusively in the developing central nervous system and adult testes. To examine the role of Wnt-1, we generated six independent embryonic stem cell lines in which insertion of a neoR gene by homologous recombination inactivated a Wnt-1 allele. Germline chimeras were generated from two lines, and progeny from matings between heterozygous parents were examined. In all day 9.5 fetuses homozygous for mutated Wnt-1 alleles, most of the midbrain and some rostral metencephalon were absent. The remainder of the neural tube and all other tissues were normal. In late-gestation homozygotes, there was virtually no midbrain and no cerebellum, while the rest of the fetus was normal. Homozygotes are born, but die within 24 hr. Thus the normal role of Wnt-1 is in determination or subsequent development of a specific region of the central nervous system.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Vagaries of conditional gene targeting.

                Bookmark

                Author and article information

                Journal
                Cell Death & Differentiation
                Cell Death Differ
                Springer Science and Business Media LLC
                1350-9047
                1476-5403
                October 3 2019
                Article
                10.1038/s41418-019-0427-1
                7206096
                31582804
                bfdaf53a-192e-42d5-bd67-4d73f197ed11
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article