58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Specific Targeting of a Plasmodesmal Protein Affecting Cell-to-Cell Communication

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodesmata provide the cytoplasmic conduits for cell-to-cell communication throughout plant tissues and participate in a diverse set of non–cell-autonomous functions. Despite their central role in growth and development and defence, resolving their modus operandi remains a major challenge in plant biology. Features of protein sequences and/or structure that determine protein targeting to plasmodesmata were previously unknown. We identify here a novel family of plasmodesmata-located proteins (called PDLP1) whose members have the features of type I membrane receptor-like proteins. We focus our studies on the first identified type member (namely At5g43980, or PDLP1a) and show that, following its altered expression, it is effective in modulating cell-to-cell trafficking. PDLP1a is targeted to plasmodesmata via the secretory pathway in a Brefeldin A–sensitive and COPII-dependent manner, and resides at plasmodesmata with its C-terminus in the cytoplasmic domain and its N-terminus in the apoplast. Using a deletion analysis, we show that the single transmembrane domain (TMD) of PDLP1a contains all the information necessary for intracellular targeting of this type I membrane protein to plasmodesmata, such that the TMD can be used to target heterologous proteins to this location. These studies identify a new family of plasmodesmal proteins that affect cell-to-cell communication. They exhibit a mode of intracellular trafficking and targeting novel for plant biology and provide technological opportunities for targeting different proteins to plasmodesmata to aid in plasmodesmal characterisation.

          Author Summary

          In plants, cylindrical, microscopic channels called plasmodesmata provide intracellular connections between cells for communication and material transport, and are important for many aspects of plant growth and defence. We identify a novel family of plasmodesmata-located proteins (called PDLP1) with features of type I membrane receptor-like proteins. In line with the potential for this protein to regulate molecular movement from cell to cell, we show that altered expression of the protein changes the efficiency of protein diffusion from plasmodesmata. We have also analysed the manner in which PDLP1 is transported to plasmodesmata. We show that the single transmembrane domain (TMD) of the protein contains all the information necessary for targeting to plasmodesmata and that proper targeting depends upon specific interactions with other factors within the membrane. Notably, a single amino acid close to the C-terminus of the TMD is critical for determining the intracellular destination. Further, by fusing the TMD to yellow fluorescent protein, we establish that the TMD can be used to target heterologous proteins to plasmodesmata.

          Abstract

          Little is know about the structure and function of plant cell-to-cell connections, called plasmodesmata. This paper describes a new family of plasmodesmal proteins and the processes controlling their subcellular trafficking.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications.

          Yellow mutants of the green fluorescent protein (YFP) are crucial constituents of genetically encoded indicators of signal transduction and fusions to monitor protein-protein interactions. However, previous YFPs show excessive pH sensitivity, chloride interference, poor photostability, or poor expression at 37 degrees C. Protein evolution in Escherichia coli has produced a new YFP named Citrine, in which the mutation Q69M confers a much lower pK(a) (5.7) than for previous YFPs, indifference to chloride, twice the photostability of previous YFPs, and much better expression at 37 degrees C and in organelles. The halide resistance is explained by a 2.2-A x-ray crystal structure of Citrine, showing that the methionine side chain fills what was once a large halide-binding cavity adjacent to the chromophore. Insertion of calmodulin within Citrine or fusion of cyan fluorescent protein, calmodulin, a calmodulin-binding peptide and Citrine has generated improved calcium indicators. These chimeras can be targeted to multiple cellular locations and have permitted the first single-cell imaging of free [Ca(2+)] in the Golgi. Citrine is superior to all previous YFPs except when pH or halide sensitivity is desired and is particularly advantageous within genetically encoded fluorescent indicators of physiological signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modular cloning in plant cells.

            New plant genes are being discovered at a rapid pace. Yet, in most cases, their precise function remains elusive. The recent advent of recombinational cloning techniques has significantly improved our ability to investigate gene functions systematically. For example, proteins fused with diverse fluorescent tags can be expressed at will using versatile cloning cassettes. In addition, novel binary T-DNA vectors are now available to assemble multiple DNA fragments simultaneously, which greatly facilitate plant cell and protein engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus.

              Rice blast disease is caused by the hemibiotrophic fungus Magnaporthe oryzae, which invades living plant cells using intracellular invasive hyphae (IH) that grow from one cell to the next. The cellular and molecular processes by which this occurs are not understood. We applied live-cell imaging to characterize the spatial and temporal development of IH and plant responses inside successively invaded rice (Oryza sativa) cells. Loading experiments with the endocytotic tracker FM4-64 showed dynamic plant membranes around IH. IH were sealed in a plant membrane, termed the extra-invasive hyphal membrane (EIHM), which showed multiple connections to peripheral rice cell membranes. The IH switched between pseudohyphal and filamentous growth. Successive cell invasions were biotrophic, although each invaded cell appeared to have lost viability when the fungus moved into adjacent cells. EIHM formed distinct membrane caps at the tips of IH that initially grew in neighboring cells. Time-lapse imaging showed IH scanning plant cell walls before crossing, and transmission electron microscopy showed IH preferentially contacting or crossing cell walls at pit fields. This and additional evidence strongly suggest that IH co-opt plasmodesmata for cell-to-cell movement. Analysis of biotrophic blast invasion will significantly contribute to our understanding of normal plant processes and allow the characterization of secreted fungal effectors that affect these processes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                January 2008
                22 January 2008
                : 6
                : 1
                : e7
                Affiliations
                [1 ] John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
                [2 ] Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), Strasbourg, France
                [3 ] Université Louis Pasteur (Strasbourg 1), Strasbourg, France
                Max Planck Institute for Developmental Biology, Germany
                Author notes
                * To whom correspondence should be addressed. E-mail: andy.maule@ 123456bbsrc.ac.uk
                Article
                07-PLBI-RA-0566R2 plbi-06-01-07
                10.1371/journal.pbio.0060007
                2211546
                18215111
                bfe3abc3-8e80-45ea-8b64-219b6ca517b7
                Copyright: © 2008 Thomas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 March 2007
                : 30 November 2007
                Page count
                Pages: 11
                Categories
                Research Article
                Plant Biology
                Custom metadata
                Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6(1): e7. doi: 10.1371/journal.pbio.0060007

                Life sciences
                Life sciences

                Comments

                Comment on this article