19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synthesis, Characterization, and In Vitro Anticancer Evaluation of Novel 2,5-Disubstituted 1,3,4-Oxadiazole Analogue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this series, we have synthesised a new 2,5-disubstituted 1,3,4-oxadiazole in search of potential therapeutics for cancer. The anticancer activities were evaluated on a panel of 60 cell lines by the National Cancer Institute according to its own screening protocol. Out of the 24 compounds, 11 were selected and evaluated via single high dose (10 −5 M). In the next phase, two compounds have been selected for five-dose assay. The compounds 3-(5-benzyl-1,3,4-oxadiazol-2-yl)quinolin-2(1H)-one 18 (NSC-776965) and 3-[5-(2-phenoxymethyl-benzoimidazol-1-ylmethyl)-[1,3,4]oxadiazol-2-yl]-2-p-tolyloxy-quinoline 27 (NSC-776971) showed mean growth percentage of 66.23 and 46.61, respectively, in one-dose assay and their GI 50 values ranging between 1.41–15.8  μM and 0.40–14.9  μM, respectively, in 5-dose assay.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The NCI60 human tumour cell line anticancer drug screen.

          The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

            We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Raltegravir with optimized background therapy for resistant HIV-1 infection.

              Raltegravir (MK-0518) is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase active against HIV-1 susceptible or resistant to older antiretroviral drugs. We conducted two identical trials in different geographic regions to evaluate the safety and efficacy of raltegravir, as compared with placebo, in combination with optimized background therapy, in patients infected with HIV-1 that has triple-class drug resistance in whom antiretroviral therapy had failed. Patients were randomly assigned to raltegravir or placebo in a 2:1 ratio. In the combined studies, 699 of 703 randomized patients (462 and 237 in the raltegravir and placebo groups, respectively) received the study drug. Seventeen of the 699 patients (2.4%) discontinued the study before week 16. Discontinuation was related to the study treatment in 13 of these 17 patients: 7 of the 462 raltegravir recipients (1.5%) and 6 of the 237 placebo recipients (2.5%). The results of the two studies were consistent. At week 16, counting noncompletion as treatment failure, 355 of 458 raltegravir recipients (77.5%) had HIV-1 RNA levels below 400 copies per milliliter, as compared with 99 of 236 placebo recipients (41.9%, P<0.001). Suppression of HIV-1 RNA to a level below 50 copies per milliliter was achieved at week 16 in 61.8% of the raltegravir recipients, as compared with 34.7% of placebo recipients, and at week 48 in 62.1% as compared with 32.9% (P<0.001 for both comparisons). Without adjustment for the length of follow-up, cancers were detected in 3.5% of raltegravir recipients and in 1.7% of placebo recipients. The overall frequencies of drug-related adverse events were similar in the raltegravir and placebo groups. In HIV-infected patients with limited treatment options, raltegravir plus optimized background therapy provided better viral suppression than optimized background therapy alone for at least 48 weeks. (ClinicalTrials.gov numbers, NCT00293267 and NCT00293254.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                10 August 2014
                : 2014
                : 491492
                Affiliations
                1Department of Pharmaceutical Technology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India
                2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
                Author notes

                Academic Editor: Filippo Canducci

                Article
                10.1155/2014/491492
                4142173
                bfe7b4aa-d991-428a-982a-2e94fa0e818b
                Copyright © 2014 Salahuddin et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 February 2014
                : 7 June 2014
                : 19 June 2014
                Categories
                Research Article

                Comments

                Comment on this article